#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

LRGUK-1 Is Required for Basal Body and Manchette Function during Spermatogenesis and Male Fertility


Male infertility affects one in six couples in western societies and approximately half of these are the result of male factor disorders. The most common clinical presentation for male infertility is a complex mixture of abnormal sperm output, shape and motility referred to as oligoasthenoteratozoospermia (OAT). In an effort to define an origin of OAT we have analysed a mouse model of leucine-rich repeats and guanylate kinase-domain containing isoform 1 (LRGUK-1) dysfunction. Herein we show that LRGUK dynamically redistributes during the process of haploid germ cell maturation (spermiogenesis) and that LRGUK-1 function is required for multiple aspects of sperm centriole and tail development and sperm head shaping. Further, we have identified HOOK2 as a novel LRGUK-1 binding partner, thus raising the possibility that several aspects of LRGUK-1 function are achieved in partnership with HOOK2.


Vyšlo v časopise: LRGUK-1 Is Required for Basal Body and Manchette Function during Spermatogenesis and Male Fertility. PLoS Genet 11(3): e32767. doi:10.1371/journal.pgen.1005090
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005090

Souhrn

Male infertility affects one in six couples in western societies and approximately half of these are the result of male factor disorders. The most common clinical presentation for male infertility is a complex mixture of abnormal sperm output, shape and motility referred to as oligoasthenoteratozoospermia (OAT). In an effort to define an origin of OAT we have analysed a mouse model of leucine-rich repeats and guanylate kinase-domain containing isoform 1 (LRGUK-1) dysfunction. Herein we show that LRGUK dynamically redistributes during the process of haploid germ cell maturation (spermiogenesis) and that LRGUK-1 function is required for multiple aspects of sperm centriole and tail development and sperm head shaping. Further, we have identified HOOK2 as a novel LRGUK-1 binding partner, thus raising the possibility that several aspects of LRGUK-1 function are achieved in partnership with HOOK2.


Zdroje

1. McLachlan RI, O'Bryan MK (2010) Clinical Review#: State of the art for genetic testing of infertile men. J Clin Endocrinol Metab 95: 1013–1024. doi: 10.1210/jc.2009-1925 20089613

2. Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HW, et al. (2010) World Health Organization reference values for human semen characteristics. Hum Reprod Update 16: 231–245. doi: 10.1093/humupd/dmp048 19934213

3. Baker G, Barak S (2012) Clinical Management of Male Infertility. www.ENDOTEXT.org Chapter 7: MDTEXT.COM.Inc, South Dartmouth, MA, USA.

4. Schultz N, Hamra FK, Garbers DL (2003) A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci U S A 100: 12201–12206. 14526100

5. Hermo L, Pelletier RM, Cyr DG, Smith CE (2010) Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: background to spermatogenesis, spermatogonia, and spermatocytes. Microsc Res Tech 73: 241–278. doi: 10.1002/jemt.20783 19941293

6. Eddy EM (2006) The Spermatozoon. In: Neill JD, editor. Knobil and Neill's Physiology of Reproduction. 3 ed: Academic Press. pp. 3–54.

7. Lo JC, Jamsai D, O'Connor AE, Borg C, Clark BJ, et al. (2012) RAB-like 2 has an essential role in male fertility, sperm intra-flagellar transport, and tail assembly. PLoS Genet 8: e1002969. doi: 10.1371/journal.pgen.1002969 23055941

8. Kierszenbaum AL, Rivkin E, Tres LL (2007) Molecular biology of sperm head shaping. Soc Reprod Fertil Suppl 65: 33–43. 17644953

9. O'Donnell L, Rhodes D, Smith SJ, Merriner DJ, Clark BJ, et al. (2012) An essential role for katanin p80 and microtubule severing in male gamete production. PLoS Genet 8: e1002698. doi: 10.1371/journal.pgen.1002698 22654669

10. Zhou J, Du YR, Qin WH, Hu YG, Huang YN, et al. (2009) RIM-BP3 is a manchette-associated protein essential for spermiogenesis. Development 136: 373–382. doi: 10.1242/dev.030858 19091768

11. de Kretser DM, O’Bryan MK, Lynch M, Reilly A, Kennedy C, et al. (2007) The genetics of male infertility. From bench to clinic. In: Carrell DT, editor. The Genetics of Male Infertility. Totowa, NJ, USA: Humana Press Inc. pp. 251–266.

12. Hermo L, Pelletier RM, Cyr DG, Smith CE (2010) Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 2: changes in spermatid organelles associated with development of spermatozoa. Microsc Res Tech 73: 279–319. doi: 10.1002/jemt.20787 19941292

13. Kierszenbaum AL (2002) Intramanchette transport (IMT): managing the making of the spermatid head, centrosome, and tail. Mol Reprod Dev 63: 1–4. 12211054

14. Ishikawa H, Marshall WF (2011) Ciliogenesis: building the cell's antenna. Nat Rev Mol Cell Biol 12: 222–234. doi: 10.1038/nrm3085 21427764

15. Kierszenbaum AL, Rivkin E, Tres LL (2011) Cytoskeletal track selection during cargo transport in spermatids is relevant to male fertility. Spermatogenesis 1: 221–230. 22319670

16. Chemes HE (2012) Sperm Centrioles and Their Dual Role in Flagellogenesis and Cell Cycle of the Zygote. In: Schatten H, editor. The Centrosome: Humana Press. pp. 33–48.

17. Kierszenbaum AL, Tres LL, Rivkin E, Kang-Decker N, van Deursen JM (2004) The acroplaxome is the docking site of Golgi-derived myosin Va/Rab27a/b- containing proacrosomal vesicles in wild-type and Hrb mutant mouse spermatids. Biol Reprod 70: 1400–1410. 14724135

18. Kierszenbaum AL, Tres LL (2004) The acrosome-acroplaxome-manchette complex and the shaping of the spermatid head. Arch Histol Cytol 67: 271–284. 15700535

19. Baron Gaillard CL, Pallesi-Pocachard E, Massey-Harroche D, Richard F, Arsanto JP, et al. (2011) Hook2 is involved in the morphogenesis of the primary cilium. Mol Biol Cell 22: 4549–4562. doi: 10.1091/mbc.E11-05-0405 21998199

20. Szebenyi G, Hall B, Yu R, Hashim AI, Kramer H (2007) Hook2 localizes to the centrosome, binds directly to centriolin/CEP110 and contributes to centrosomal function. Traffic 8: 32–46. 17140400

21. Jamsai D, O'Bryan MK (2010) Genome-wide ENU mutagenesis for the discovery of novel male fertility regulators. Syst Biol Reprod Med 56: 246–259. doi: 10.3109/19396361003706424 20536324

22. O'Donnell L, Nicholls PK, O'Bryan MK, McLachlan RI, Stanton PG (2011) Spermiation: The process of sperm release. Spermatogenesis 1: 14–35. 21866274

23. Kleene KC (1996) Patterns of translational regulation in the mammalian testis. Mol Reprod Dev 43: 268–281. 8824926

24. Berruti G, Paiardi C (2011) Acrosome biogenesis: Revisiting old questions to yield new insights. Spermatogenesis 1: 95–98. 22319656

25. Yang WX, Sperry AO (2003) C-terminal kinesin motor KIFC1 participates in acrosome biogenesis and vesicle transport. Biol Reprod 69: 1719–1729. 12826589

26. Reese ML, Dakoji S, Bredt DS, Dotsch V (2007) The guanylate kinase domain of the MAGUK PSD-95 binds dynamically to a conserved motif in MAP1a. Nat Struct Mol Biol 14: 155–163. 17220895

27. Kobe B, Kajava AV (2001) The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 11: 725–732. 11751054

28. Linstedt AD (2004) Positioning the Golgi apparatus. Cell 118: 271–272. 15294150

29. Singla V, Reiter JF (2006) The primary cilium as the cell's antenna: signaling at a sensory organelle. Science 313: 629–633. 16888132

30. Paintrand M, Moudjou M, Delacroix H, Bornens M (1992) Centrosome organization and centriole architecture: their sensitivity to divalent cations. J Struct Biol 108: 107–128. 1486002

31. Tanos BE, Yang HJ, Soni R, Wang WJ, Macaluso FP, et al. (2013) Centriole distal appendages promote membrane docking, leading to cilia initiation. Genes Dev 27: 163–168. doi: 10.1101/gad.207043.112 23348840

32. Delgehyr N, Sillibourne J, Bornens M (2005) Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function. J Cell Sci 118: 1565–1575. 15784680

33. Mogensen MM, Malik A, Piel M, Bouckson-Castaing V, Bornens M (2000) Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein. J Cell Sci 113 (Pt 17): 3013–3023. 10934040

34. Moynihan KL, Pooley R, Miller PM, Kaverina I, Bader DM (2009) Murine CENP-F regulates centrosomal microtubule nucleation and interacts with Hook2 at the centrosome. Mol Biol Cell 20: 4790–4803. doi: 10.1091/mbc.E09-07-0560 19793914

35. Braun RE (1998) Post-transcriptional control of gene expression during spermatogenesis. Semin Cell Dev Biol 9: 483–489. 9813196

36. Gadella BM (2012) Dynamic regulation of sperm interactions with the zona pellucida prior to and after fertilisation. Reprod Fertil Dev 25: 26–37. doi: 10.1071/RD12277 23244826

37. Kerr J, Loveland KL, O’Bryan MK, de Kretser DM (2006) The Cytology of the Testis and Intrinsic Control Mechanisms. In: Neill JD, Challis JRG, de Kretser DM, Pfaff DW, Richards JS et al., editors. The Physiology of Reproduction. 3rd ed. St. Louis, MO: Elsevier Academic Press. pp. 827–947.

38. Mendoza-Lujambio I, Burfeind P, Dixkens C, Meinhardt A, Hoyer-Fender S, et al. (2002) The Hook1 gene is non-functional in the abnormal spermatozoon head shape (azh) mutant mouse. Hum Mol Genet 11: 1647–1658. 12075009

39. Xu L, Sowa ME, Chen J, Li X, Gygi SP, et al. (2008) An FTS/Hook/p107(FHIP) complex interacts with and promotes endosomal clustering by the homotypic vacuolar protein sorting complex. Mol Biol Cell 19: 5059–5071. doi: 10.1091/mbc.E08-05-0473 18799622

40. Davis EE, Katsanis N (2012) The ciliopathies: a transitional model into systems biology of human genetic disease. Curr Opin Genet Dev 22: 290–303. doi: 10.1016/j.gde.2012.04.006 22632799

41. Lehti MS, Kotaja N, Sironen A (2013) KIF3A is essential for sperm tail formation and manchette function. Mol Cell Endocrinol 377: 44–55. doi: 10.1016/j.mce.2013.06.030 23831641

42. Taulman PD, Haycraft CJ, Balkovetz DF, Yoder BK (2001) Polaris, a protein involved in left-right axis patterning, localizes to basal bodies and cilia. Mol Biol Cell 12: 589–599. 11251073

43. Borg CL, Wolski KM, Gibbs GM, O'Bryan MK (2010) Phenotyping male infertility in the mouse: how to get the most out of a 'non-performer'. Hum Reprod Update 16: 205–224. doi: 10.1093/humupd/dmp032 19758979

44. Cotton L, Gibbs GM, Sanchez-Partida LG, Morrison JR, de Kretser DM, et al. (2006) FGFR-1 [corrected] signaling is involved in spermiogenesis and sperm capacitation. J Cell Sci 119: 75–84. 16352663

45. Arsov T, Silva DG, O'Bryan MK, Sainsbury A, Lee NJ, et al. (2006) Fat aussie—a new Alstrom syndrome mouse showing a critical role for ALMS1 in obesity, diabetes, and spermatogenesis. Mol Endocrinol 20: 1610–1622. 16513793

46. Gibbs GM, Orta G, Reddy T, Koppers AJ, Martinez-Lopez P, et al. (2011) Cysteine-rich secretory protein 4 is an inhibitor of transient receptor potential M8 with a role in establishing sperm function. Proc Natl Acad Sci U S A 108: 7034–7039. doi: 10.1073/pnas.1015935108 21482758

47. Ahmed EA, de Rooij DG (2009) Staging of mouse seminiferous tubule cross-sections. Methods Mol Biol 558: 263–277. doi: 10.1007/978-1-60761-103-5_16 19685330

48. Saito K, O'Donnell L, McLachlan RI, Robertson DM (2000) Spermiation failure is a major contributor to early spermatogenic suppression caused by hormone withdrawal in adult rats. Endocrinology 141: 2779–2785. 10919263

49. Vergouwen RP, Huiskamp R, Bas RJ, Roepers-Gajadien HL, Davids JA, et al. (1993) Postnatal development of testicular cell populations in mice. J Reprod Fertil 99: 479–485. 8107030

50. Romrell LJ, Bellve AR, Fawcett DW (1976) Separation of mouse spermatogenic cells by sedimentation velocity. A morphological characterization. Dev Biol 49: 119–131. 176074

51. Ly-Huynh JD, Lieu KG, Major AT, Whiley PA, Holt JE, et al. (2011) Importin alpha2-interacting proteins with nuclear roles during mammalian spermatogenesis. Biol Reprod 85: 1191–1202. doi: 10.1095/biolreprod.111.091686 21900684

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#