Mitochondrial Dysfunction Reveals the Role of mRNA Poly(A) Tail Regulation in Oculopharyngeal Muscular Dystrophy Pathogenesis
Oculopharyngeal muscular dystrophy is a genetic disease characterized by progressive degeneration of specific muscles, leading to ptosis (eyelid drooping), dysphagia (swallowing difficulties) and proximal limb weakness. The disease results from mutations in a nuclear protein called poly(A) binding protein nuclear 1 that is involved in polyadenylation of messenger RNAs (mRNAs) and poly(A) site selection. To address the molecular mechanisms involved in the disease, we have used two animal models (Drosophila and mouse) that recapitulate the features of this disorder. We show that oculopharyngeal muscular dystrophy pathogenesis depends on defects in poly(A) tail length regulation of specific mRNAs. Because poly(A) tails play an essential role in mRNA stability, these defects result in accelerated decay of these mRNAs. The affected mRNAs encode mitochondrial proteins, and mitochondrial activity is impaired in diseased muscles. These findings have important implications for the development of potential therapies for oculopharyngeal muscular dystrophy, and might be relevant to decipher the molecular mechanisms underlying other disorders that involve mitochondrial dysfunction.
Vyšlo v časopise:
Mitochondrial Dysfunction Reveals the Role of mRNA Poly(A) Tail Regulation in Oculopharyngeal Muscular Dystrophy Pathogenesis. PLoS Genet 11(3): e32767. doi:10.1371/journal.pgen.1005092
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1005092
Souhrn
Oculopharyngeal muscular dystrophy is a genetic disease characterized by progressive degeneration of specific muscles, leading to ptosis (eyelid drooping), dysphagia (swallowing difficulties) and proximal limb weakness. The disease results from mutations in a nuclear protein called poly(A) binding protein nuclear 1 that is involved in polyadenylation of messenger RNAs (mRNAs) and poly(A) site selection. To address the molecular mechanisms involved in the disease, we have used two animal models (Drosophila and mouse) that recapitulate the features of this disorder. We show that oculopharyngeal muscular dystrophy pathogenesis depends on defects in poly(A) tail length regulation of specific mRNAs. Because poly(A) tails play an essential role in mRNA stability, these defects result in accelerated decay of these mRNAs. The affected mRNAs encode mitochondrial proteins, and mitochondrial activity is impaired in diseased muscles. These findings have important implications for the development of potential therapies for oculopharyngeal muscular dystrophy, and might be relevant to decipher the molecular mechanisms underlying other disorders that involve mitochondrial dysfunction.
Zdroje
1. Taylor JP, Hardy J, Fischbeck KH (2002) Toxic proteins in neurodegenerative disease. Science 296: 1991–1995. 12065827
2. Ramaswami M, Taylor JP, Parker R (2013) Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154: 727–736. doi: 10.1016/j.cell.2013.07.038 23953108
3. Todd PK, Paulson HL (2010) RNA-mediated neurodegeneration in repeat expansion disorders. Annals of neurology 67: 291–300. doi: 10.1002/ana.21948 20373340
4. Brais B, Bouchard J-P, Xie Y-G, Rochefort DL, Chrétien N, et al. (1998) Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nature Genetics 18: 164–167. 9462747
5. Abu-Baker A, Rouleau GA (2007) Oculopharyngeal muscular dystrophy: recent advances in the understanding of the molecular pathogenic mechanisms and treatment strategies. Biochim Biophys Acta 1772: 173–185. 17110089
6. Davies JE, Berger Z, Rubinsztein DC (2006) Oculopharyngeal muscular dystrophy: potential therapies for an aggregate-associated disorder. Int J Biochem Cell Biol 38: 1457–1462. 16530457
7. Tome FM, Fardeau M (1980) Nuclear inclusions in oculopharyngeal dystrophy. Acta Neuropathol (Berl) 49: 85–87. 6243839
8. Calado A, Tome FM, Brais B, Rouleau GA, Kuhn U, et al. (2000) Nuclear inclusions in oculopharyngeal muscular dystrophy consist of poly(A) binding protein II aggregates which sequester poly(A) RNA. Hum Mol Genet 9: 2321–2328. 11001936
9. Anvar SY, t Hoen PA, Venema A, van der Sluijs B, van Engelen B, et al. (2011) Deregulation of the ubiquitin-proteasome system is the predominant molecular pathology in OPMD animal models and patients. Skeletal muscle 1: 15. doi: 10.1186/2044-5040-1-15 21798095
10. Raz V, Buijze H, Raz Y, Verwey N, Anvar SY, et al. (2014) A Novel Feed-Forward Loop between ARIH2 E3-Ligase and PABPN1 Regulates Aging-Associated Muscle Degeneration. The American journal of pathology 184: 1119–1131. doi: 10.1016/j.ajpath.2013.12.011 24486325
11. Davies JE, Rubinsztein DC (2011) Over-expression of BCL2 rescues muscle weakness in a mouse model of oculopharyngeal muscular dystrophy. Human molecular genetics 20: 1154–1163. doi: 10.1093/hmg/ddq559 21199860
12. Wahle E (1991) A novel poly(A)-Binding protein acts as a specificity factor in the second phase of messenger RNA polyadenylation. Cell 66: 759–768. 1878970
13. Bienroth S, Keller W, Wahle E (1993) Assembly of a processive mRNA polyadenylation complex. EMBO J 12: 585–594. 8440247
14. Kerwitz Y, Kuhn U, Lilie H, Knoth A, Scheuermann T, et al. (2003) Stimulation of poly(A) polymerase through a direct interaction with the nuclear poly(A) binding protein allosterically regulated by RNA. The EMBO journal 22: 3705–3714. 12853485
15. Kuhn U, Gundel M, Knoth A, Kerwitz Y, Rudel S, et al. (2009) Poly(A) tail length is controlled by the nuclear poly(A)-binding protein regulating the interaction between poly(A) polymerase and the cleavage and polyadenylation specificity factor. The Journal of biological chemistry 284: 22803–22814. doi: 10.1074/jbc.M109.018226 19509282
16. Benoit B, Mitou G, Chartier A, Temme C, Zaessinger S, et al. (2005) An essential cytoplasmic function for the nuclear poly(A) binding protein, PABP2, in poly(A) tail length control and early development in Drosophila. Dev Cell 9: 511–522. 16198293
17. Apponi LH, Leung SW, Williams KR, Valentini SR, Corbett AH, et al. (2010) Loss of nuclear poly(A)-binding protein 1 causes defects in myogenesis and mRNA biogenesis. Human molecular genetics 19: 1058–1065. doi: 10.1093/hmg/ddp569 20035013
18. Bresson SM, Conrad NK (2013) The human nuclear poly(a)-binding protein promotes RNA hyperadenylation and decay. PLoS genetics 9: e1003893. doi: 10.1371/journal.pgen.1003893 24146636
19. Beaulieu YB, Kleinman CL, Landry-Voyer AM, Majewski J, Bachand F (2012) Polyadenylation-dependent control of long noncoding RNA expression by the poly(A)-binding protein nuclear 1. PLoS genetics 8: e1003078. doi: 10.1371/journal.pgen.1003078 23166521
20. Jenal M, Elkon R, Loayza-Puch F, van Haaften G, Kuhn U, et al. (2012) The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites. Cell 149: 538–553. doi: 10.1016/j.cell.2012.03.022 22502866
21. de Klerk E, Venema A, Anvar SY, Goeman JJ, Hu O, et al. (2012) Poly(A) binding protein nuclear 1 levels affect alternative polyadenylation. Nucleic acids research 40: 9089–9101. doi: 10.1093/nar/gks655 22772983
22. Barbezier N, Chartier A, Bidet Y, Buttstedt A, Voisset C, et al. (2011) Antiprion drugs 6-aminophenanthridine and guanabenz reduce PABPN1 toxicity and aggregation in oculopharyngeal muscular dystrophy. EMBO molecular medicine 3: 35–49. doi: 10.1002/emmm.201000109 21204267
23. Chartier A, Benoit B, Simonelig M (2006) A Drosophila model of oculopharyngeal muscular dystrophy reveals intrinsic toxicity of PABPN1. Embo J 25: 2253–2262. 16642034
24. Semotok JL, Cooperstock RL, Pinder BD, Vari HK, Lipshitz HD, et al. (2005) Smaug recruits the CCR4/POP2/NOT deadenylase complex to trigger maternal transcript localization in the early Drosophila embryo. Curr Biol 15: 284–294. 15723788
25. Zaessinger S, Busseau I, Simonelig M (2006) Oskar allows nanos mRNA translation in Drosophila embryos by preventing its deadenylation by Smaug/CCR4. Development 133: 4573–4583. 17050620
26. Chartier A, Raz V, Sterrenburg E, Verrips CT, van der Maarel SM, et al. (2009) Prevention of oculopharyngeal muscular dystrophy by muscular expression of Llama single-chain intrabodies in vivo. Hum Mol Genet 18: 1849–1859. doi: 10.1093/hmg/ddp101 19258344
27. Lyne R, Smith R, Rutherford K, Wakeling M, Varley A, et al. (2007) FlyMine: an integrated database for Drosophila and Anopheles genomics. Genome biology 8: R129. 17615057
28. Chen J, Shi X, Padmanabhan R, Wang Q, Wu Z, et al. (2008) Identification of novel modulators of mitochondrial function by a genome-wide RNAi screen in Drosophila melanogaster. Genome research 18: 123–136. 18042644
29. Sykiotis GP, Bohmann D (2008) Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Developmental cell 14: 76–85. doi: 10.1016/j.devcel.2007.12.002 18194654
30. Fariss MW, Chan CB, Patel M, Van Houten B, Orrenius S (2005) Role of mitochondria in toxic oxidative stress. Molecular interventions 5: 94–111. 15821158
31. Kelly DP, Scarpulla RC (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes & development 18: 357–368.
32. Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocrine reviews 24: 78–90. 12588810
33. Scarpulla RC (2008) Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiological reviews 88: 611–638. doi: 10.1152/physrev.00025.2007 18391175
34. Baltzer C, Tiefenbock SK, Marti M, Frei C (2009) Nutrition controls mitochondrial biogenesis in the Drosophila adipose tissue through Delg and cyclin D/Cdk4. PLoS One 4: e6935. doi: 10.1371/journal.pone.0006935 19742324
35. Herzig RP, Andersson U, Scarpulla RC (2000) Dynein light chain interacts with NRF-1 and EWG, structurally and functionally related transcription factors from humans and drosophila. Journal of cell science 113 Pt 23: 4263–4273. 11069771
36. Tiefenbock SK, Baltzer C, Egli NA, Frei C (2010) The Drosophila PGC-1 homologue Spargel coordinates mitochondrial activity to insulin signalling. The EMBO journal 29: 171–183. doi: 10.1038/emboj.2009.330 19910925
37. Tennessen JM, Baker KD, Lam G, Evans J, Thummel CS (2011) The Drosophila estrogen-related receptor directs a metabolic switch that supports developmental growth. Cell metabolism 13: 139–148. doi: 10.1016/j.cmet.2011.01.005 21284981
38. Barthmaier P, Fyrberg E (1995) Monitoring development and pathology of Drosophila indirect flight muscles using green fluorescent protein. Developmental biology 169: 770–774. 7781915
39. Temme C, Simonelig M, Wahle E (2014) Deadenylation of mRNA by the CCR4-NOT complex in Drosophila: molecular and developmental aspects. Frontiers in Genetics 5: 143. doi: 10.3389/fgene.2014.00143 24904643
40. Temme C, Zaessinger S, Meyer S, Simonelig M, Wahle E (2004) A complex containing the CCR4 and CAF1 proteins is involved in mRNA deadenylation in Drosophila. EMBO J 23: 2862–2871. 15215893
41. Temme C, Zhang L, Kremmer E, Ihling C, Chartier A, et al. (2010) Subunits of the Drosophila CCR4-NOT complex and their roles in mRNA deadenylation. Rna 16: 1356–1370. doi: 10.1261/rna.2145110 20504953
42. Benoit P, Papin C, Kwak JE, Wickens M, Simonelig M (2008) PAP- and GLD-2-type poly(A) polymerases are required sequentially in cytoplasmic polyadenylation and oogenesis in Drosophila. Development 135: 1969–1979. doi: 10.1242/dev.021444 18434412
43. Juge F, Zaessinger S, Temme C, Wahle E, Simonelig M (2002) Control of poly(A) polymerase level is essential to cytoplasmic polyadenylation and early development in Drosophila. EMBO J 21: 6603–6613. 12456666
44. Goldstrohm AC, Hook BA, Seay DJ, Wickens M (2006) PUF proteins bind Pop2p to regulate messenger RNAs. Nat Struct Mol Biol 13: 533–539. 16715093
45. Kadyrova LY, Habara Y, Lee TH, Wharton RP (2007) Translational control of maternal Cyclin B mRNA by Nanos in the Drosophila germline. Development 134: 1519–1527. 17360772
46. Garcia-Rodriguez LJ, Gay AC, Pon LA (2007) Puf3p, a Pumilio family RNA binding protein, localizes to mitochondria and regulates mitochondrial biogenesis and motility in budding yeast. J Cell Biol 176: 197–207. 17210948
47. Gerber AP, Herschlag D, Brown PO (2004) Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol 2: E79. 15024427
48. Saint-Georges Y, Garcia M, Delaveau T, Jourdren L, Le Crom S, et al. (2008) Yeast mitochondrial biogenesis: a role for the PUF RNA-binding protein Puf3p in mRNA localization. PLoS One 3: e2293. doi: 10.1371/journal.pone.0002293 18523582
49. Rouget C, Papin C, Boureux A, Meunier AC, Franco B, et al. (2010) Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo. Nature 467: 1128–1132. doi: 10.1038/nature09465 20953170
50. de Haro M, Al-Ramahi I, Jones KR, Holth JK, Timchenko LT, et al. (2013) Smaug/SAMD4A restores translational activity of CUGBP1 and suppresses CUG-induced myopathy. PLoS genetics 9: e1003445. doi: 10.1371/journal.pgen.1003445 23637619
51. Chen L, Dumelie JG, Li X, Cheng MH, Yang Z, et al. (2014) Global regulation of mRNA translation and stability in the early Drosophila embryo by the Smaug RNA-binding protein. Genome biology 15: R4. doi: 10.1186/gb-2014-15-1-r4 24393533
52. Berciano MT, Villagra NT, Ojeda JL, Navascues J, Gomes A, et al. (2004) Oculopharyngeal muscular dystrophy-like nuclear inclusions are present in normal magnocellular neurosecretory neurons of the hypothalamus. Hum Mol Genet 13: 829–838. 14976164
53. Davies JE, Wang L, Garcia-Oroz L, Cook LJ, Vacher C, et al. (2005) Doxycycline attenuates and delays toxicity of the oculopharyngeal muscular dystrophy mutation in transgenic mice. Nat Med 11: 672–677. 15864313
54. Trollet C, Anvar SY, Venema A, Hargreaves IP, Foster K, et al. (2010) Molecular and phenotypic characterization of a mouse model of oculopharyngeal muscular dystrophy reveals severe muscular atrophy restricted to fast glycolytic fibres. Human molecular genetics 19: 2191–2207. doi: 10.1093/hmg/ddq098 20207626
55. Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols 4: 44–57. doi: 10.1038/nprot.2008.211 19131956
56. Aviv T, Lin Z, Ben-Ari G, Smibert CA, Sicheri F (2006) Sequence-specific recognition of RNA hairpins by the SAM domain of Vts1p. Nature structural & molecular biology 13: 168–176.
57. Green JB, Gardner CD, Wharton RP, Aggarwal AK (2003) RNA recognition via the SAM domain of Smaug. Molecular cell 11: 1537–1548. 12820967
58. Gidaro T, Negroni E, Perie S, Mirabella M, Laine J, et al. (2013) Atrophy, fibrosis, and increased PAX7-positive cells in pharyngeal muscles of oculopharyngeal muscular dystrophy patients. Journal of neuropathology and experimental neurology 72: 234–243. doi: 10.1097/NEN.0b013e3182854c07 23399899
59. Kratter IH, Finkbeiner S (2010) PolyQ disease: Too many Qs, too much function? Neuron 67: 897–899. doi: 10.1016/j.neuron.2010.09.012 20869586
60. Raz V, Routledge S, Venema A, Buijze H, van der Wal E, et al. (2011) Modeling oculopharyngeal muscular dystrophy in myotube cultures reveals reduced accumulation of soluble mutant PABPN1 protein. The American journal of pathology 179: 1988–2000. doi: 10.1016/j.ajpath.2011.06.044 21854744
61. Feany MB, Bender WW (2000) A Drosophila model of Parkinson's disease. Nature 404: 394–398. 10746727
62. Keller RW, Kuhn U, Aragon M, Bornikova L, Wahle E, et al. (2000) The nuclear poly(A) binding protein, PABP2, forms an oligomeric particle covering the length of the poly(A) tail. J Mol Biol 297: 569–583. 10731412
63. Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431: 805–810. 15483602
64. Baez MV, Luchelli L, Maschi D, Habif M, Pascual M, et al. (2011) Smaug1 mRNA-silencing foci respond to NMDA and modulate synapse formation. The Journal of cell biology 195: 1141–1157. doi: 10.1083/jcb.201108159 22201125
65. Schon EA, Przedborski S (2011) Mitochondria: the next (neurode)generation. Neuron 70: 1033–1053. doi: 10.1016/j.neuron.2011.06.003 21689593
66. Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, et al. (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS biology 8: e1000298. doi: 10.1371/journal.pbio.1000298 20126261
67. Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL, et al. (2011) PINK1 and Parkin Target Miro for Phosphorylation and Degradation to Arrest Mitochondrial Motility. Cell 147: 893–906. doi: 10.1016/j.cell.2011.10.018 22078885
68. Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, et al. (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441: 1162–1166. 16672981
69. Park J, Lee SB, Lee S, Kim Y, Song S, et al. (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441: 1157–1161. 16672980
70. Salles FJ, Strickland S (1999) Analysis of poly(A) tail lengths by PCR: the PAT assay. Methods Mol Biol 118: 441–448. 10549542
71. Janicke A, Vancuylenberg J, Boag PR, Traven A, Beilharz TH (2012) ePAT: a simple method to tag adenylated RNA to measure poly(A)-tail length and other 3' RACE applications. RNA 18: 1289–1295. doi: 10.1261/rna.031898.111 22543866
72. Casas F, Pessemesse L, Grandemange S, Seyer P, Baris O, et al. (2009) Overexpression of the mitochondrial T3 receptor induces skeletal muscle atrophy during aging. PLoS One 4: e5631. doi: 10.1371/journal.pone.0005631 19462004
73. Benoit B, Nemeth A, Aulner N, Kühn U, Simonelig M, et al. (1999) The Drosophila poly(A)-binding protein II is ubiquitous throughout Drosophila development and has the same function in mRNA polyadenylation as its bovine homolog in vitro. Nucleic Acids Res 27: 3771–3778. 10481015
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2015 Číslo 3
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Clonality and Evolutionary History of Rhabdomyosarcoma
- Morphological Mutations: Lessons from the Cockscomb
- Maternal Filaggrin Mutations Increase the Risk of Atopic Dermatitis in Children: An Effect Independent of Mutation Inheritance
- Transcriptomic Profiling of Reveals Reprogramming of the Crp Regulon by Temperature and Uncovers Crp as a Master Regulator of Small RNAs