#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Small Regulatory RNA-Induced Growth Rate Heterogeneity of


Bacterial cells that share the same genetic information can display very different phenotypes, even if they grow under identical conditions. Despite the relevance of this population heterogeneity for processes like drug resistance and development, the molecular players that induce heterogenic phenotypes are often not known. Here we report that in the Gram-positive model bacterium Bacillus subtilis a small regulatory RNA (sRNA) can induce heterogeneity in growth rates by increasing cell-to-cell variation in the levels of the transcriptional regulator AbrB, which is important for rapid growth. Remarkably, the observed variation in AbrB levels is induced post-transcriptionally because of AbrB’s negative autoregulation, and is not observed at the abrB promoter level. We show that our observations are consistent with mathematical models of sRNA action, thus suggesting that induction of protein expression noise could be a new general aspect of sRNA regulation. Since a low growth rate can be beneficial for cellular survival, we propose that the observed subpopulations of fast- and slow-growing B. subtilis cells reflect a bet-hedging strategy for enhanced survival of unfavorable conditions.


Vyšlo v časopise: Small Regulatory RNA-Induced Growth Rate Heterogeneity of. PLoS Genet 11(3): e32767. doi:10.1371/journal.pgen.1005046
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005046

Souhrn

Bacterial cells that share the same genetic information can display very different phenotypes, even if they grow under identical conditions. Despite the relevance of this population heterogeneity for processes like drug resistance and development, the molecular players that induce heterogenic phenotypes are often not known. Here we report that in the Gram-positive model bacterium Bacillus subtilis a small regulatory RNA (sRNA) can induce heterogeneity in growth rates by increasing cell-to-cell variation in the levels of the transcriptional regulator AbrB, which is important for rapid growth. Remarkably, the observed variation in AbrB levels is induced post-transcriptionally because of AbrB’s negative autoregulation, and is not observed at the abrB promoter level. We show that our observations are consistent with mathematical models of sRNA action, thus suggesting that induction of protein expression noise could be a new general aspect of sRNA regulation. Since a low growth rate can be beneficial for cellular survival, we propose that the observed subpopulations of fast- and slow-growing B. subtilis cells reflect a bet-hedging strategy for enhanced survival of unfavorable conditions.


Zdroje

1. Buescher JM, Liebermeister W, Jules M, Uhr M, Muntel J, et al. (2012) Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism. Science 335(6072): 1099–1103. doi: 10.1126/science.1206871 22383848

2. Beisel CL, Storz G. (2010) Base pairing small RNAs and their roles in global regulatory networks. FEMS Microbiol Rev 34(5): 866–882. doi: 10.1111/j.1574-6976.2010.00241.x 20662934

3. Storz G, Vogel J, Wassarman KM. (2011) Regulation by small RNAs in bacteria: Expanding frontiers. Mol Cell 43(6): 880–891. doi: 10.1016/j.molcel.2011.08.022 21925377

4. Aiba H. (2007) Mechanism of RNA silencing by Hfq-binding small RNAs. Curr Opin Microbiol 10(2): 134–139. 17383928

5. Gaballa A, Antelmann H, Aguilar C, Khakh SK, Song KB, et al. (2008) The Bacillus subtilis iron-sparing response is mediated by a Fur-regulated small RNA and three small, basic proteins. Proc Natl Acad Sci U S A 105(33): 11927–11932. doi: 10.1073/pnas.0711752105 18697947

6. Heidrich N, Chinali A, Gerth U, Brantl S. (2006) The small untranslated RNA SR1 from the Bacillus subtilis genome is involved in the regulation of arginine catabolism. Mol Microbiol 62(2): 520–536. 17020585

7. Smaldone GT, Revelles O, Gaballa A, Sauer U, Antelmann H, et al. (2012) A global investigation of the Bacillus subtilis iron-sparing response identifies major changes in metabolism. J Bacteriol 194(10): 2594–2605. doi: 10.1128/JB.05990-11 22389480

8. Irnov I, Sharma CM, Vogel J, Winkler WC. (2010) Identification of regulatory RNAs in Bacillus subtilis. Nucleic Acids Res 38(19): 6637–6651. doi: 10.1093/nar/gkq454 20525796

9. Nicolas P, Mader U, Dervyn E, Rochat T, Leduc A, et al. (2012) Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 335(6072): 1103–1106. doi: 10.1126/science.1206848 22383849

10. Raj A, van Oudenaarden A. (2008) Nature, nurture, or chance: Stochastic gene expression and its consequences. Cell 135(2): 216–226. doi: 10.1016/j.cell.2008.09.050 18957198

11. Losick R, Desplan C. (2008) Stochasticity and cell fate. Science 320(5872): 65–68. doi: 10.1126/science.1147888 18388284

12. Maamar H, Raj A, Dubnau D. (2007) Noise in gene expression determines cell fate in Bacillus subtilis. Science 317(5837): 526–529. 17569828

13. Chastanet A, Vitkup D, Yuan GC, Norman TM, Liu JS, et al. (2010) Broadly heterogeneous activation of the master regulator for sporulation in Bacillus subtilis. Proc Natl Acad Sci U S A 107(18): 8486–8491. doi: 10.1073/pnas.1002499107 20404177

14. Veening JW, Smits WK, Kuipers OP. (2008) Bistability, epigenetics, and bet-hedging in bacteria. Annu Rev Microbiol 62: 193–210. doi: 10.1146/annurev.micro.62.081307.163002 18537474

15. Elowitz MB, Levine AJ, Siggia ED, Swain PS. (2002) Stochastic gene expression in a single cell. Science 297(5584): 1183–1186. 12183631

16. Paulsson J. (2004) Summing up the noise in gene networks. Nature 427(6973): 415–418. 14749823

17. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. (2004) Bacterial persistence as a phenotypic switch. Science 305(5690): 1622–1625. 15308767

18. Eldar A, Elowitz MB. (2010) Functional roles for noise in genetic circuits. Nature 467(7312): 167–173. doi: 10.1038/nature09326 20829787

19. Madar D, Dekel E, Bren A, Alon U. (2011) Negative auto-regulation increases the input dynamic-range of the arabinose system of Escherichia coli. BMC Syst Biol 5: 111–0509–5–111. doi: 10.1186/1752-0509-5-111.Negative 21749723

20. Saile E, Koehler TM. (2002) Control of anthrax toxin gene expression by the transition state regulator abrB. J Bacteriol 184(2): 370–380. 11751813

21. Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, et al. (2001) Comparative genomics of Listeria species. Science 294(5543): 849–852. 11679669

22. Fisher SH, Strauch MA, Atkinson MR, Wray LV Jr. (1994) Modulation of Bacillus subtilis catabolite repression by transition state regulatory protein AbrB. J Bacteriol 176(7): 1903–1912. 8144456

23. Mader U, Schmeisky AG, Florez LA, Stulke J. (2012) SubtiWiki—a comprehensive community resource for the model organism Bacillus subtilis. Nucleic Acids Res 40(Database issue): D1278–87. doi: 10.1093/nar/gkr923 22096228

24. Chumsakul O, Takahashi H, Oshima T, Hishimoto T, Kanaya S, et al. (2011) Genome-wide binding profiles of the Bacillus subtilis transition state regulator AbrB and its homolog Abh reveals their interactive role in transcriptional regulation. Nucleic Acids Res 39(2): 414–428. doi: 10.1093/nar/gkq780 20817675

25. Bobay BG, Benson L, Naylor S, Feeney B, Clark AC, et al. (2004) Evaluation of the DNA binding tendencies of the transition state regulator AbrB. Biochemistry 43(51): 16106–16118. 15610005

26. Banse AV, Chastanet A, Rahn-Lee L, Hobbs EC, Losick R. (2008) Parallel pathways of repression and antirepression governing the transition to stationary phase in Bacillus subtilis. Proc Natl Acad Sci U S A 105(40): 15547–15552. doi: 10.1073/pnas.0805203105 18840696

27. Schultz D, Wolynes PG, Ben Jacob E, Onuchic JN. (2009) Deciding fate in adverse times: Sporulation and competence in Bacillus subtilis. Proc Natl Acad Sci U S A 106(50): 21027–21034. doi: 10.1073/pnas.0912185106 19995980

28. Schmalisch M, Maiques E, Nikolov L, Camp AH, Chevreux B, et al. (2010) Small genes under sporulation control in the Bacillus subtilis genome. J Bacteriol 192(20): 5402–5412. doi: 10.1128/JB.00534-10 20709900

29. Will S, Joshi T, Hofacker IL, Stadler PF, Backofen R. (2012) LocARNA-P: Accurate boundary prediction and improved detection of structural RNAs. RNA 18(5): 900–914. doi: 10.1261/rna.029041.111 22450757

30. Hofacker IL, Stadler PF. (2006) Memory efficient folding algorithms for circular RNA secondary structures. Bioinformatics 22(10): 1172–1176. 16452114

31. Nicholson WL. (2012) Increased competitive fitness of Bacillus subtilis under nonsporulating conditions via inactivation of pleiotropic regulators AlsR, SigD, and SigW. Appl Environ Microbiol 78(9): 3500–3503. doi: 10.1128/AEM.07742-11 22344650

32. Tjaden B. (2008) TargetRNA: A tool for predicting targets of small RNA action in bacteria. Nucleic Acids Res 36(Web Server issue): W109–13. doi: 10.1093/nar/gkn264 18477632

33. Horsburgh MJ, Moir A. (1999) Sigma M, an ECF RNA polymerase sigma factor of Bacillus subtilis 168, is essential for growth and survival in high concentrations of salt. Mol Microbiol 32(1): 41–50. 10216858

34. Xu K, Clark D, Strauch MA. (1996) Analysis of abrB mutations, mutant proteins, and why abrB does not utilize a perfect consensus in the-35 region of its sigma A promoter. J Biol Chem 271(5): 2621–2626. 8576231

35. Hahn J, Roggiani M, Dubnau D. (1995) The major role of Spo0A in genetic competence is to downregulate abrB, an essential competence gene. J Bacteriol 177(12): 3601–3605. 7768874

36. Deana A, Belasco JG. (2005) Lost in translation: The influence of ribosomes on bacterial mRNA decay. Genes Dev 19(21): 2526–2533. 16264189

37. Peer A, Margalit H. (2011) Accessibility and evolutionary conservation mark bacterial small-RNA target-binding regions. J Bacteriol 193(7): 1690–1701. doi: 10.1128/JB.01419-10 21278294

38. Botella E, Fogg M, Jules M, Piersma S, Doherty G, et al. (2010) pBaSysBioII: An integrative plasmid generating gfp transcriptional fusions for high-throughput analysis of gene expression in Bacillus subtilis. Microbiology 156(Pt 6): 1600–1608. doi: 10.1099/mic.0.035758-0 20150235

39. Doherty GP, Fogg MJ, Wilkinson AJ, Lewis PJ. (2010) Small subunits of RNA polymerase: Localization, levels and implications for core enzyme composition. Microbiology 156(Pt 12): 3532–3543. doi: 10.1099/mic.0.041566-0 20724389

40. Smits WK, Kuipers OP, Veening JW. (2006) Phenotypic variation in bacteria: The role of feedback regulation. Nat Rev Microbiol 4(4): 259–271. 16541134

41. Greene EA, Spiegelman GB. (1996) The Spo0A protein of Bacillus subtilis inhibits transcription of the abrB gene without preventing binding of the polymerase to the promoter. J Biol Chem 271(19): 11455–11461. 8626703

42. Becskei A, Serrano L. (2000) Engineering stability in gene networks by autoregulation. Nature 405(6786): 590–593. 10850721

43. Dublanche Y, Michalodimitrakis K, Kummerer N, Foglierini M, Serrano L. (2006) Noise in transcription negative feedback loops: Simulation and experimental analysis. Mol Syst Biol 2: 41. 16883354

44. Kearns DB, Losick R. (2005) Cell population heterogeneity during growth of Bacillus subtilis. Genes Dev 19(24): 3083–3094. 16357223

45. Levine E, Zhang Z, Kuhlman T, Hwa T. (2007) Quantitative characteristics of gene regulation by small RNA. PLoS Biol 5(9): e229. 17713988

46. Arbel-Goren R, Tal A, Friedlander T, Meshner S, Costantino N, et al. (2013) Effects of post-transcriptional regulation on phenotypic noise in Escherichia coli. Nucleic Acids Res 41(9): 4825–4834. doi: 10.1093/nar/gkt184 23519613

47. Jia Y, Liu W, Li A, Yang L, Zhan X. (2009) Intrinsic noise in post-transcriptional gene regulation by small non-coding RNA. Biophys Chem 143(1–2): 60–69. doi: 10.1016/j.bpc.2009.05.003 19487068

48. Hambraeus G, von Wachenfeldt C, Hederstedt L. (2003) Genome-wide survey of mRNA half-lives in Bacillus subtilis identifies extremely stable mRNAs. Mol Genet Genomics 269(5): 706–714. 12884008

49. Jost D, Nowojewski A, Levine E. (2013) Regulating the many to benefit the few: Role of weak small RNA targets. Biophys J 104(8): 1773–1782. doi: 10.1016/j.bpj.2013.02.020 23601324

50. Britton RA, Eichenberger P, Gonzalez-Pastor JE, Fawcett P, Monson R, et al. (2002) Genome-wide analysis of the stationary-phase sigma factor (sigma-H) regulon of Bacillus subtilis. J Bacteriol 184(17): 4881–4890. 12169614

51. Reilman E, Mars RA, van Dijl JM, Denham EL. (2015) The multidrug ABC transporter BmrC/BmrD of Bacillus subtilis is regulated via a ribosome-mediated transcriptional attenuation mechanism. Nucleic Acids Res 42(18): 11393–11407.

52. Piersma S, Denham EL, Drulhe S, Tonk RH, Schwikowski B, et al. (2013) TLM-quant: An open-source pipeline for visualization and quantification of gene expression heterogeneity in growing microbial cells. PLoS One 8(7): e68696. doi: 10.1371/journal.pone.0068696 23874729

53. Gefen O, Balaban NQ. (2009) The importance of being persistent: Heterogeneity of bacterial populations under antibiotic stress. FEMS Microbiol Rev 33(4): 704–717. doi: 10.1111/j.1574-6976.2008.00156.x 19207742

54. Tuomanen E, Cozens R, Tosch W, Zak O, Tomasz A. (1986) The rate of killing of Escherichia coli by ß-lactam antibiotics is strictly proportional to the rate of bacterial growth. Journal of General Microbiology 132(5): 1297–1304. 3534137

55. Hecker M, Pane-Farre J, Volker U. (2007) SigB-dependent general stress response in Bacillus subtilis and related Gram-positive bacteria. Annu Rev Microbiol 61: 215–236. 18035607

56. Rotem E, Loinger A, Ronin I, Levin-Reisman I, Gabay C, et al. (2010) Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence. Proc Natl Acad Sci U S A 107(28): 12541–12546. doi: 10.1073/pnas.1004333107 20616060

57. Kunst F, Rapoport G. (1995) Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. J Bacteriol 177(9): 2403–2407. 7730271

58. Tanaka K, Henry CS, Zinner JF, Jolivet E, Cohoon MP, et al. (2013) Building the repertoire of dispensable chromosome regions in Bacillus subtilis entails major refinement of cognate large-scale metabolic model. Nucleic Acids Res 41(1): 687–699. doi: 10.1093/nar/gks963 23109554

59. Darmon E, Dorenbos R, Meens J, Freudl R, Antelmann H, et al. (2006) A disulfide bond-containing alkaline phosphatase triggers a BdbC-dependent secretion stress response in Bacillus subtilis. Appl Environ Microbiol 72(11): 6876–6885. 17088376

60. Quan J, Tian J. (2009) Circular polymerase extension cloning of complex gene libraries and pathways. PLoS One 4(7): e6441. doi: 10.1371/journal.pone.0006441 19649325

61. Haun RS, Serventi IM, Moss J. (1992) Rapid, reliable ligation-independent cloning of PCR products using modified plasmid vectors. BioTechniques 13(4): 515–518. 1362067

62. Ki JS, Zhang W, Qian PY. (2009) Discovery of marine bacillus species by 16S rRNA and rpoB comparisons and their usefulness for species identification. J Microbiol Methods 77(1): 48–57. doi: 10.1016/j.mimet.2009.01.003 19166882

63. Homuth G, Masuda S, Mogk A, Kobayashi Y, Schumann W. (1997) The dnaK operon of Bacillus subtilis is heptacistronic. J Bacteriol 179(4): 1153–1164. 9023197

64. Zweers JC, Wiegert T, van Dijl JM. (2009) Stress-responsive systems set specific limits to the overproduction of membrane proteins in Bacillus subtilis. Appl Environ Microbiol 75(23): 7356–7364. doi: 10.1128/AEM.01560-09 19820159

65. Shock JL, Fischer KF, DeRisi JL. (2007) Whole-genome analysis of mRNA decay in Plasmodium falciparum reveals a global lengthening of mRNA half-life during the intra-erythrocytic development cycle. Genome Biol 8(7): R134. 17612404

66. Gillespie DT. (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25): 2340–2361.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#