#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Seizures Are Regulated by Ubiquitin-specific Peptidase 9 X-linked (USP9X), a De-Ubiquitinase


Epilepsy is a common disabling disorder characterized by seizures with complex genetic and environmental components. The absence of a definitive pathophysiology for epilepsy stymies the development of effective treatment strategies. In a small fraction of epilepsy cases however, single gene mutations may illuminate seizure-causing mechanisms, which may open the door to the discovery of broader, more effective therapeutic strategies. We have previously shown that disruption of Prickle genes in multiple species including humans, results in a predisposition to seizures. Those findings support Prickle in a seizure-preventing role and presents a possible anti-seizure therapeutic target. We identified the deubiquitinase Usp9x (ubiquitin-specific peptidase 9 X-linked) as a new Prickle binding partner which stabilized Prickle by preventing its degradation. In mice lacking the Usp9x protein in their forebrains, Prickle2 was barely detectable. In seizure-prone prickle mutant Drosophila, reducing fat facets (Drosophila usp9x) genetically or by a small-molecule usp9x inhibitor (Degrasyn/WP1130) suppressed the seizures. We also found 2 epilepsy patients harboring mutations in USP9X. Our findings demonstrate that inhibition of Usp9x can arrest prickle-mediated seizures, and variations in USP9X may predispose to seizures. From these studies, we have elucidated a seizure-inducing mechanism, identified a potential anti-seizure target, and a potential anti-seizure drug.


Vyšlo v časopise: Seizures Are Regulated by Ubiquitin-specific Peptidase 9 X-linked (USP9X), a De-Ubiquitinase. PLoS Genet 11(3): e32767. doi:10.1371/journal.pgen.1005022
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005022

Souhrn

Epilepsy is a common disabling disorder characterized by seizures with complex genetic and environmental components. The absence of a definitive pathophysiology for epilepsy stymies the development of effective treatment strategies. In a small fraction of epilepsy cases however, single gene mutations may illuminate seizure-causing mechanisms, which may open the door to the discovery of broader, more effective therapeutic strategies. We have previously shown that disruption of Prickle genes in multiple species including humans, results in a predisposition to seizures. Those findings support Prickle in a seizure-preventing role and presents a possible anti-seizure therapeutic target. We identified the deubiquitinase Usp9x (ubiquitin-specific peptidase 9 X-linked) as a new Prickle binding partner which stabilized Prickle by preventing its degradation. In mice lacking the Usp9x protein in their forebrains, Prickle2 was barely detectable. In seizure-prone prickle mutant Drosophila, reducing fat facets (Drosophila usp9x) genetically or by a small-molecule usp9x inhibitor (Degrasyn/WP1130) suppressed the seizures. We also found 2 epilepsy patients harboring mutations in USP9X. Our findings demonstrate that inhibition of Usp9x can arrest prickle-mediated seizures, and variations in USP9X may predispose to seizures. From these studies, we have elucidated a seizure-inducing mechanism, identified a potential anti-seizure target, and a potential anti-seizure drug.


Zdroje

1. Paemka L, Mahajan VB, Skeie JM, Sowers LP, Ehaideb SN, Gonzalez-Alegre P, et al. PRICKLE1 interaction with SYNAPSIN I reveals a role in autism spectrum disorders. PLoS One. 2013; 8: e80737. doi: 10.1371/journal.pone.0080737 24312498

2. Sowers LP, Loo L, Wu Y, Campbell E, Ulrich JD, Wu S, et al. Disruption of the non-canonical Wnt gene PRICKLE2 leads to autism-like behaviors with evidence for hippocampal synaptic dysfunction. Mol Psychiatry. 2013; 18: 1077–1089. doi: 10.1038/mp.2013.71 23711981

3. Ehaideb SN, Iyengar A, Ueda A, Iacobucci GJ, Cranston C, Bassuk AG, et al. prickle modulates microtubule polarity and axonal transport to ameliorate seizures in flies. Proc Natl Acad Sci U S A. 2014; 111: 11187–11192. doi: 10.1073/pnas.1403357111 25024231

4. Bassuk AG, Wallace RH, Buhr A, Buller AR, Afawi Z, Shimojo M, et al. A homozygous mutation in human PRICKLE1 causes an autosomal-recessive progressive myoclonus epilepsy-ataxia syndrome. Am J Hum Genet. 2008; 83: 572–581. doi: 10.1016/j.ajhg.2008.10.003 18976727

5. Tao H, Manak JR, Sowers L, Mei X, Kiyonari H, Abe T, et al. Mutations in prickle orthologs cause seizures in flies, mice, and humans. Am J Hum Genet. 2011; 88: 138–149. doi: 10.1016/j.ajhg.2010.12.012 21276947

6. Daulat AM, Luu O, Sing A, Zhang L, Wrana JL, McNeill H, et al. Mink1 regulates beta-catenin-independent Wnt signaling via Prickle phosphorylation. Mol Cell Biol. 2012; 32: 173–185. doi: 10.1128/MCB.06320-11 22037766

7. Shimojo M, Hersh LB. REST/NRSF-interacting LIM domain protein, a putative nuclear translocation receptor. Mol Cell Biol. 2003; 23: 9025–9031. 14645515

8. Narimatsu M, Bose R, Pye M, Zhang L, Miller B, Ching P, et al. Regulation of planar cell polarity by Smurf ubiquitin ligases. Cell. 2009; 137: 295–307. doi: 10.1016/j.cell.2009.02.025 19379695

9. Shimojo M. Huntingtin regulates RE1-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) nuclear trafficking indirectly through a complex with REST/NRSF-interacting LIM domain protein (RILP) and dynactin p150 Glued. J Biol Chem. 2008; 283: 34880–34886. doi: 10.1074/jbc.M804183200 18922795

10. Pittman RN, Wang S, DiBenedetto AJ, Mills JC. A system for characterizing cellular and molecular events in programmed neuronal cell death. J Neurosci. 1993; 13: 3669–3680. 8396168

11. Jolly LA, Taylor V, Wood SA. USP9X enhances the polarity and self-renewal of embryonic stem cell-derived neural progenitors. Mol Biol Cell. 2009; 20: 2015–2029. doi: 10.1091/mbc.E08-06-0596 19176755

12. Stegeman S, Jolly LA, Premarathne S, Gecz J, Richards LJ, Mackay-Sim A, et al. Loss of Usp9x disrupts cortical architecture, hippocampal development and TGFbeta-mediated axonogenesis. PLoS One. 2013; 8: e68287. doi: 10.1371/journal.pone.0068287 23861879

13. Xie Y, Avello M, Schirle M, McWhinnie E, Feng Y, Bric-Furlong E, et al. Deubiquitinase FAM/USP9X interacts with the E3 ubiquitin ligase SMURF1 protein and protects it from ligase activity-dependent self-degradation. J Biol Chem. 2013; 288: 2976–2985. doi: 10.1074/jbc.M112.430066 23184937

14. Homan CC, Kumar R, Nguyen LS, Haan E, Raymond FL, Abidi F, et al. Mutations in USP9X are associated with X-linked intellectual disability and disrupt neuronal cell migration and growth. Am J Hum Genet. 2014; 94: 470–478. doi: 10.1016/j.ajhg.2014.02.004 24607389

15. Xu J, Taya S, Kaibuchi K, Arnold AP. Spatially and temporally specific expression in mouse hippocampus of Usp9x, a ubiquitin-specific protease involved in synaptic development. J Neurosci Res. 2005; 80: 47–55. 15723417

16. Chen H, Polo S, Di Fiore PP, De Camilli PV. Rapid Ca2+-dependent decrease of protein ubiquitination at synapses. Proc Natl Acad Sci U S A. 2003; 100: 14908–14913. 14657369

17. Micel LN, Tentler JJ, Smith PG, Eckhardt GS. Role of ubiquitin ligases and the proteasome in oncogenesis: novel targets for anticancer therapies. J Clin Oncol. 2013; 31: 1231–1238. doi: 10.1200/JCO.2012.44.0958 23358974

18. Fischer-Vize JA, Rubin GM, Lehmann R. The fat facets gene is required for Drosophila eye and embryo development. Development. 1992; 116: 985–1000. 1295747

19. Darbro BW, Mahajan VB, Gakhar L, Skeie JM, Campbell E, Wu S, et al. Mutations in extracellular matrix genes NID1 and LAMC1 cause autosomal dominant Dandy-Walker malformation and occipital cephaloceles. Human mutation. 2013; 34: 1075–1079. doi: 10.1002/humu.22351 23674478

20. Dawid IB, Breen JJ, Toyama R. LIM domains: multiple roles as adapters and functional modifiers in protein interactions. Trends in genetics: TIG. 1998; 14: 156–162. 9594664

21. Schwickart M, Huang X, Lill JR, Liu J, Ferrando R, French DM, et al. Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature. 2010; 463: 103–107. doi: 10.1038/nature08646 20023629

22. Grou CP, Francisco T, Rodrigues TA, Freitas MO, Pinto MP, Carvalho AF, et al. Identification of ubiquitin-specific protease 9X (USP9X) as a deubiquitinase acting on ubiquitin-peroxin 5 (PEX5) thioester conjugate. J Biol Chem. 2012; 287: 12815–12827. doi: 10.1074/jbc.M112.340158 22371489

23. Taya S, Yamamoto T, Kano K, Kawano Y, Iwamatsu A, Tsuchiya T, et al. The Ras target AF-6 is a substrate of the fam deubiquitinating enzyme. J Cell Biol. 1998; 142: 1053–1062. 9722616

24. Kapuria V, Peterson LF, Fang D, Bornmann WG, Talpaz M, Donato NJ. Deubiquitinase inhibition by small-molecule WP1130 triggers aggresome formation and tumor cell apoptosis. Cancer Res. 2010; 70: 9265–9276. doi: 10.1158/0008-5472.CAN-10-1530 21045142

25. Tarpey PS, Smith R, Pleasance E, Whibley A, Edkins S, Hardy C, et al. A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation. Nat Genet. 2009; 41: 535–543. doi: 10.1038/ng.367 19377476

26. Iossifov I, O'Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder: Supplementary Table 2. Nature. 2014.

27. Parker L, Padilla M, Du Y, Dong K, Tanouye MA. Drosophila as a model for epilepsy: bss is a gain-of-function mutation in the para sodium channel gene that leads to seizures. Genetics. 2011; 187: 523–534. doi: 10.1534/genetics.110.123299 21115970

28. Suzuki DT, Grigliatti T, Williamson R. Temperature-sensitive mutations in Drosophila melanogaster. VII. A mutation (para-ts) causing reversible adult paralysis. Proc Natl Acad Sci U S A. 1971; 68: 890–893. 5280526

29. Siddiqi O, Benzer S. Neurophysiological defects in temperature-sensitive paralytic mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1976; 73: 3253–3257. 184469

30. Wu CF, Ganetzky B. Genetic alteration of nerve membrane excitability in temperature-sensitive paralytic mutants of Drosophila melanogaster. Nature. 1980; 286: 814–816. 6250083

31. Kuebler D, Zhang H, Ren X, Tanouye MA. Genetic suppression of seizure susceptibility in Drosophila. J Neurophysiol. 2001; 86: 1211–1225. 11535671

32. VIB Department of Molecular Genetics. SCN1A Variant Database Antwerp, Belgium: University of Antwerp; 2009 [updated 22 June 2011; cited 2014 13 Nov]. The Variation Database of SCN1A was made public in February 2009. The SCN2001A variation database aims at collecting all variations in the voltage-gated sodium channel Nav2001.2001. Variations are collected from the literature and by direct submission through this website.]. Available from: http://www.molgen.ua.ac.be/SCN1AMutations/Home/Default.cfm.

33. Strutt H, Searle E, Thomas-Macarthur V, Brookfield R, Strutt D. A Cul-3-BTB ubiquitylation pathway regulates junctional levels and asymmetry of core planar polarity proteins. Development. 2013; 140: 1693–1702. doi: 10.1242/dev.089656 23487316

34. de Ligt J, Willemsen MH, van Bon BW, Kleefstra T, Yntema HG, Kroes T, et al. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med. 2012; 367: 1921–1929. doi: 10.1056/NEJMoa1206524 23033978

35. Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, Rosenbaum J, et al. De novo gene disruptions in children on the autistic spectrum. Neuron. 2012; 74: 285–299. doi: 10.1016/j.neuron.2012.04.009 22542183

36. De Novo Mutations in Synaptic Transmission Genes Including DNM1 Cause Epileptic Encephalopathies. American journal of human genetics. 2014; 95: 360–370. doi: 10.1016/j.ajhg.2014.08.013 25262651

37. Graham FL, Smiley J, Russell WC, Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. The Journal of general virology. 1977; 36: 59–74. 886304

38. Gonzalez-Alegre P, Paulson HL. Aberrant cellular behavior of mutant torsinA implicates nuclear envelope dysfunction in DYT1 dystonia. J Neurosci. 2004; 24: 2593–2601. 15028751

39. Carvill GL, Heavin SB, Yendle SC, McMahon JM, O'Roak BJ, Cook J, et al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet. 2013; 45: 825–830. doi: 10.1038/ng.2646 23708187

40. Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, van Emde Boas W, et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia. 2010; 51: 676–685. doi: 10.1111/j.1528-1167.2010.02522.x 20196795

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#