#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Pervasive Variation of Transcription Factor Orthologs Contributes to Regulatory Network Evolution


The phenotypic differences observed between closely related organisms are thought to be due largely to changes in regulatory networks. Changes in transcriptional networks can occur via mutations in cis binding sites, for which there are numerous known examples, as well as via binding specificity variation in transcription factors (TFs), a less studied phenomenon that has been observed primarily in multi-gene families. Though large-scale experimental studies ascertaining the extent to which TFs contribute to regulatory network variation across organisms are lacking and would be time-consuming, computational methods can begin to address this challenge. Here, we present a systematic, large-scale analysis of DNA-binding specificity evolution in TF orthologs by computationally leveraging specific features of Cys2-His2 zinc finger proteins, the largest class of TFs in animals and major components of their regulatory programs. We find not only that divergence of DNA-binding residues in 1-to-1 orthologous C2H2-ZFs is pervasive but also that these changes show evidence of functional constraint and occur in a gradual, evolutionarily viable manner. We conclude that the diversification of orthologous TFs has most likely played a major and largely unstudied role in gene regulatory network evolution in metazoans.


Vyšlo v časopise: Pervasive Variation of Transcription Factor Orthologs Contributes to Regulatory Network Evolution. PLoS Genet 11(3): e32767. doi:10.1371/journal.pgen.1005011
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005011

Souhrn

The phenotypic differences observed between closely related organisms are thought to be due largely to changes in regulatory networks. Changes in transcriptional networks can occur via mutations in cis binding sites, for which there are numerous known examples, as well as via binding specificity variation in transcription factors (TFs), a less studied phenomenon that has been observed primarily in multi-gene families. Though large-scale experimental studies ascertaining the extent to which TFs contribute to regulatory network variation across organisms are lacking and would be time-consuming, computational methods can begin to address this challenge. Here, we present a systematic, large-scale analysis of DNA-binding specificity evolution in TF orthologs by computationally leveraging specific features of Cys2-His2 zinc finger proteins, the largest class of TFs in animals and major components of their regulatory programs. We find not only that divergence of DNA-binding residues in 1-to-1 orthologous C2H2-ZFs is pervasive but also that these changes show evidence of functional constraint and occur in a gradual, evolutionarily viable manner. We conclude that the diversification of orthologous TFs has most likely played a major and largely unstudied role in gene regulatory network evolution in metazoans.


Zdroje

1. King M, Wilson A (1975) Evolution at two levels in humans and chimpanzees. Science 188: 107–116. doi: 10.1126/science.1090005 1090005

2. Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M, et al. (2003) The evolution of transcriptional regulation in eukaryotes. Mol Biol Evol 20: 1377–1419. doi: 10.1093/molbev/msg140 12777501

3. Prud’homme B, Gompel N, Carroll SB (2007) Emerging principles of regulatory evolution. PNAS 104: 8605–8612. doi: 10.1073/pnas.0700488104 17494759

4. Stern DL, Orgogozo V (2008) The loci of evolution: How predictable is genetic evolution? Evolution 62: 2155–2177. doi: 10.1111/j.1558-5646.2008.00450.x 18616572

5. Liao BY, Weng MP, Zhang J (2010) Contrasting genetic paths to morphological and physiological evolution. PNAS 107: 7353–7358. doi: 10.1073/pnas.0910339107 20368429

6. Britten RJ, Davidson EH (1969) Gene regulation for higher cells: A theory. Science 165: 349–357. doi: 10.1126/science.165.3891.349 5789433

7. Stern DL (2000) Perspective: Evolutionary developmental biology and the problem of variation. Evolution 54: 1079–1091. doi: 10.1554/0014-3820(2000)054%5B1079:PEDBAT%5D2.0.CO;2 11005278

8. Carroll SB (2005) Evolution at two levels: On genes and form. PLoS Biol 3: e245. doi: 10.1371/journal.pbio.0030245 16000021

9. Wray GA (2007) The evolutionary significance of cis-regulatory mutations. Nat Rev Genet 8: 206–216. doi: 10.1038/nrg2063 17304246

10. Vlad D, Kierzkowski D, Rast MI, Vuolo F, Dello Ioio R, et al. (2014) Leaf shape evolution through duplication, regulatory diversification, and loss of a homeobox gene. Science 343: 780–783. doi: 10.1126/science.1248384 24531971

11. Wagner GP, Lynch VJ (2008) The gene regulatory logic of transcription factor evolution. Trends Ecol Evol 23: 377–385. doi: 10.1016/j.tree.2008.03.006 18501470

12. Singh LN, Hannenhalli S (2008) Functional diversification of paralogous transcription factors via divergence in DNA binding site motif and in expression. PLoS ONE 3: e2345. doi: 10.1371/journal.pone.0002345 18523562

13. Emerson RO, Thomas JH (2009) Adaptive evolution in zinc finger transcription factors. PLoS Genet 5: e1000325. doi: 10.1371/journal.pgen.1000325 19119423

14. Baker CR, Tuch BB, Johnson AD (2011) Extensive DNA-binding specificity divergence of a conserved transcription regulator. PNAS 108: 7493–7498. doi: 10.1073/pnas.1019177108 21498688

15. Nakagawa S, Gisselbrecht SS, Rogers JM, Hartl DL, Bulyk ML (2013) DNA-binding specificity changes in the evolution of forkhead transcription factors. PNAS 110: 12349–12354. doi: 10.1073/pnas.1310430110 23836653

16. Sayou C, Monniaux M, Nanao MH, Moyroud E, Brockington SF, et al. (2014) A promiscuous intermediate underlies the evolution of LEAFY DNA-binding specificity. Science 343: 645–648. doi: 10.1126/science.1248229 24436181

17. Galant R, Carroll SB (2002) Evolution of a transcriptional repression domain in an insect Hox protein. Nature 415: 910–913. doi: 10.1038/nature717 11859369

18. Ronshaugen M, McGinnis N, McGinnis W (2002) Hox protein mutation and macroevolution of the insect body plan. Nature 415: 914–917. doi: 10.1038/nature716 11859370

19. Pabo CO, Peisach E, Grant RA (2001) Design and selection of novel Cys2His2 zinc finger proteins. Ann Rev Biochem 70: 313–340. doi: 10.1146/annurev.biochem.70.1.313 11395410

20. Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM (2009) A census of human transcription factors: Function, expression and evolution. Nat Rev Genet 10: 252–263. doi: 10.1038/nrg2538 19274049

21. Enuameh MS, Asriyan Y, Richards A, Christensen RG, Hall VL, et al. (2013) Global analysis of Drosophila Cys2-His2 zinc finger proteins reveals a multitude of novel recognition motifs and binding determinants. Genome Res 23: 928–940. doi: 10.1101/gr.151472.112 23471540

22. Benos PV, Lapedes AS, Stormo GD (2002) Probabilistic code for DNA recognition by proteins of the EGR family. J Mol Biol 323: 701–727. doi: 10.1016/S0022-2836(02)00917-8 12419259

23. Kaplan T, Friedman N, Margalit H (2005) Ab initio prediction of transcription factor targets using structural knowledge. PLoS Comput Biol 1: e1. doi: 10.1371/journal.pcbi.0010001 16103898

24. Persikov AV, Singh M (2014) De novo prediction of DNA-binding specificities for Cys2His2 zinc finger proteins. Nucleic Acids Res 42: 97–108. doi: 10.1093/nar/gkt890 24097433

25. Gupta A, Christensen RG, Bell HA, Goodwin M, Patel RY, et al. (2014) An improved predictive recognition model for Cys2-His2 zinc finger proteins. Nucleic Acids Res 42: 4800–4812. doi: 10.1093/nar/gku132 24523353

26. Persikov AV, Wetzel JL, Rowland EF, Oakes BL, Xu DJ, et al. (2015) A systematic survey of the Cys2His2 zinc finger DNA-binding landscape. Nucleic Acids Res In press: doi: 10.1093/nar/gku1395 25593323

27. Nowick K, Fields C, Gernat T, Caetano-Anolles D, Kholina N, et al. (2011) Gain, loss and divergence in primate zinc-finger genes: A rich resource for evolution of gene regulatory differences between species. PLoS ONE 6: e21553. doi: 10.1371/journal.pone.0021553 21738707

28. Shannon M, Hamilton AT, Gordon L, Branscomb E, Stubbs L (2003) Differential expansion of zinc-finger transcription factor loci in homologous human and mouse gene clusters. Genome Res 13: 1097–1110. doi: 10.1101/gr.963903 12743021

29. Nowick K, Hamilton AT, Zhang H, Stubbs L (2010) Rapid sequence and expression divergence suggest selection for novel function in primate-specific KRAB-ZNF genes. Mol Biol Evol 27: 2606–2617. doi: 10.1093/molbev/msq157 20573777

30. Stubbs L, Sun Y, Caetano-Anolles D (2011) Function and evolution of C2H2 zinc finger arrays, Houten, Netherlands: Springer Publishing. In A Handbook of Transcription Factors (ed. Hughes TR), pp. 75–94.

31. Liu H, Chang LH, Sun Y, Lu X, Stubbs L (2014) Deep vertebrate roots for mammalian zinc finger transcription factor subfamilies. Genome Biol Evol 6: 510–525. doi: 10.1093/gbe/evu030 24534434

32. Looman C, Åbrink M, Mark C, Hellman L (2002) KRAB zinc finger proteins: An analysis of the molecular mechanisms governing their increase in numbers and complexity during evolution. Mol Biol Evol 19: 2118–2130. doi: 10.1093/oxfordjournals.molbev.a004037 12446804

33. Knight R, Shimeld S (2001) Identification of conserved C2H2 zinc-finger gene families in the Bilateria. Genome Biol 2: R16.1–R16.8. doi: 10.1186/gb-2001-2-5-research0016

34. Seetharam A, Bai Y, Stuart G (2010) A survey of well conserved families of C2H2 zinc-finger genes in Daphnia. BMC Genomics 11: 276–295. doi: 10.1186/1471-2164-11-276 20433734

35. Seetharam A, Stuart GW (2013) A study on the distribution of 37 well conserved families of C2H2 zinc finger genes in eukaryotes. BMC Genomics 14: 420–426. doi: 10.1186/1471-2164-14-420 23800006

36. Oliver PL, Goodstadt L, Bayes JJ, Birtle Z, Roach KC, et al. (2009) Accelerated evolution of the PRDM9 speciation gene across diverse metazoan taxa. PLoS Genet 5: e1000753. doi: 10.1371/journal.pgen.1000753 19997497

37. Myers S, Bowden R, Tumian A, Bontrop RE, Freeman C, et al. (2010) Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. Science 327: 876–879. doi: 10.1126/science.1182363 20044541

38. Berg IL, Neumann R, Sarbajna S, Odenthal-Hesse L, Butler NJ, et al. (2011) Variants of the protein PRDM9 differentially regulate a set of human meiotic recombination hotspots highly active in African populations. PNAS 108: 12378–12383. doi: 10.1073/pnas.1109531108 21750151

39. Ségurel L, Leffler EM, Przeworski M (2011) The case of the fickle fingers: How the PRDM9 zinc finger protein specifies meiotic recombination hotspots in humans. PLoS Biol 9: e1001211. doi: 10.1371/journal.pbio.1001211 22162947

40. Groeneveld LF, Atencia R, Garriga RM, Vigilant L (2012) High diversity at PRDM9 in chimpanzees and bonobos. PLoS ONE 7: e39064. doi: 10.1371/journal.pone.0039064 22768294

41. Hoekstra HE, Coyne JA (2007) The locus of evolution: Evo devo and the genetics of adaptation. Evolution 61: 995–1016. doi: 10.1111/j.1558-5646.2007.00105.x 17492956

42. Drosophila 12 Genomes Consortium (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450: 203–218. doi: 10.1038/nature06341 17994087

43. Marygold SJ, Leyland PC, Seal RL, Goodman JL, Thurmond J, et al. (2013) FlyBase: Improvements to the bibliography. Nucleic Acids Res 41: 751–757. doi: 10.1093/nar/gks1024

44. Gompel N, Carroll SB (2003) Genetic mechanisms and constraints governing the evolution of correlated traits in Drosophilid flies. Nature 424: 931–935. doi: 10.1038/nature01787 12931186

45. Jeong S, Rokas A, Carroll SB (2006) Regulation of body pigmentation by the Abdominal-B Hox protein and its gain and loss in Drosophila evolution. Cell 125: 1387–1399. doi: 10.1016/j.cell.2006.04.043 16814723

46. Markow TA, O’Grady PM (2007) Drosophila biology in the genomic age. Genetics 177: 1269–1276. doi: 10.1534/genetics.107.074112 18039866

47. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, et al. (2012) The Pfam protein families database. Nucleic Acids Res 40: 290–301. doi: 10.1093/nar/gkr1065

48. Finn RD, Clements J, Eddy SR (2011) HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res 39: W29–W37. doi: 10.1093/nar/gkr367 21593126

49. Meyer LR, Zweig AS, Hinrichs AS, Karolchik D, Kuhn RM, et al. (2013) The UCSC Genome Browser database: Extensions and updates 2013. Nucleic Acids Res 41: 64–69. doi: 10.1093/nar/gks1048

50. Iuchi S (2001) Three classes of C2H2 zinc finger proteins. Cell Mol Life Sci 58: 625–635. 11361095

51. Adryan B, Teichmann SA (2006) Flytf: A systematic review of site-specific transcription factors in the fruit fly Drosophila melanogaster. Bioinformatics 22: 1532–1533. doi: 10.1093/bioinformatics/btl143 16613907

52. Wolfe SA, Nekludova L, Pabo CO (2000) DNA recognition by Cys2His2 zinc finger proteins. Ann Rev Bioph Biom 29: 183–212. doi: 10.1146/annurev.biophys.29.1.183

53. Persikov AV, Singh M (2011) An expanded binding model for Cys2 His2 zinc finger protein-DNA interfaces. Phys Biol 8: e035010. doi: 10.1088/1478-3975/8/3/035010

54. Siggers T, Reddy J, Barron B, Bulyk ML (2014) Diversification of transcription factor paralogs via noncanonical modularity in C2H2 zinc finger DNA binding. Mol Cell 55: 1–9. doi: 10.1016/j.molcel.2014.06.019

55. Mayrose I, Graur D, Ben-Tal N, Pupko T (2004) Comparison of site-specific rate-inference methods for protein sequences: Empirical Bayesian methods are superior. Mol Biol Evol 21: 1781–1791. doi: 10.1093/molbev/msh194 15201400

56. Kimura M (1977) Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature 267: 275–276. doi: 10.1038/267275a0 865622

57. Yang Z (1997) PAML: A program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13: 555–556. 9367129

58. McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351: 652–654. doi: 10.1038/351652a0 1904993

59. Pool JE, Corbett-Detig RB, Sugino RP, Stevens KA, Cardeno CM, et al. (2012) Population genomics of sub-Saharan Drosophila melanogaster: African diversity and non-African admixture. PLoS Genet 8: e1003080. doi: 10.1371/journal.pgen.1003080 23284287

60. Bustamante CD, Wakeley J, Sawyer S, Hartl DL (2001) Directional selection and the site-frequency spectrum. Genetics 159: 1779–1788. 11779814

61. Persikov AV, Rowland EF, Oakes BL, Singh M, Noyes MB (2014) Deep sequencing of large library selections allows computational discovery of diverse sets of zinc fingers that bind common targets. Nucleic Acids Res 42: 1497–1508. doi: 10.1093/nar/gkt1034 24214968

62. Persikov AV, Osada R, Singh M (2009) Predicting DNA recognition by Cys2His2 zinc finger proteins. Bioinformatics 25: 22–29. doi: 10.1093/bioinformatics/btn580 19008249

63. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: A sequence logo generator. Genome Res 14: 1188–1190. doi: 10.1101/gr.849004 15173120

64. modENCODE Consortium (2010) Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330: 1787–1797. doi: 10.1126/science.1198374 21177974

65. Zhu LJ, Christensen RG, Kazemian M, Hull CJ, Enuameh MS, et al. (2011) FlyFactorSurvey: A database of Drosophila transcription factor binding specificities determined using the bacterial one-hybrid system. Nucleic Acids Res 39: D111–D117. doi: 10.1093/nar/gkq858 21097781

66. Mathelier A, Zhao X, Zhang AW, Parcy F, Worsley-Hunt R, et al. (2014) JASPAR 2014: An extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res 42: D142–D147. doi: 10.1093/nar/gkt997 24194598

67. Matys V, Fricke E, Geffers R, Gößling E, Haubrock M, et al. (2003) TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 31: 374–378. doi: 10.1093/nar/gkg108 12520026

68. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. (2009) MEME Suite: Tools for motif discovery and searching. Nucleic Acids Res 37: W202–W208. doi: 10.1093/nar/gkp335 19458158

69. Boyle EI, Weng S, Gollub J, Jin H, Botstein D, et al. (2004) GO∷TermFinder—open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20: 3710–3715. doi: 10.1093/bioinformatics/bth456 15297299

70. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, et al. (2013) STRING v9.1: Protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41: D808–D815. doi: 10.1093/nar/gks1094 23203871

71. Li H, Baker B (1998) Her, a gene required for sexual differentiation in Drosophila, encodes a zinc finger protein with characteristics of ZFY-like proteins and is expressed independently of the sex determination hierarchy. Development 125: 225–235. 9486796

72. Perezgasga L, Jiang J, Bolival B, Hiller M, Benson E, et al. (2004) Regulation of transcription of meiotic cell cycle and terminal differentiation genes by the testis-specific Zn-finger protein matotopetli. Development 131: 1691–1702. doi: 10.1242/dev.01032 15084455

73. Laugier E, Yang Z, Fasano L, Kerridge S, Vola C (2005) A critical role of teashirt for patterning the ventral epidermis is masked by ectopic expression of tiptop, a paralog of teashirt in Drosophila. Dev Biol 283: 446–458. doi: 10.1016/j.ydbio.2005.05.005 15936749

74. Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, et al. (2012) InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40: D306–D312. doi: 10.1093/nar/gkr948 22096229

75. Chung HR, Schäfer U, Jäckle H, Böhm S (2002) Genomic expansion and clustering of ZAD-containing C2H2 zinc-finger genes in Drosophila. EMBO reports 3: 1158–1162. doi: 10.1093/embo-reports/kvf243 12446571

76. Jauch R, Bourenkov GP, Chung HR, Urlaub H, Reidt U, et al. (2003) The zinc finger-associated domain of the Drosophila transcription factor Grauzone is a novel zinc-coordinating protein-protein interaction module. Structure 11: 1393–1402. doi: 10.1016/j.str.2003.09.015 14604529

77. Chung HR, Löhr U, Jäckle H (2007) Lineage-specific expansion of the zinc finger associated domain ZAD. Mol Biol Evol 24: 1934–1943. doi: 10.1093/molbev/msm121 17569752

78. Robinson SW, Herzyk P, Dow JAT, Leader DP (2013) FlyAtlas: database of gene expression in the tissues of Drosophila melanogaster. Nucleic Acids Res 41: D744–D750. doi: 10.1093/nar/gks1141 23203866

79. Tuch BB, Galgoczy DJ, Hernday AD, Li H, Johnson AD (2008) The evolution of combinatorial gene regulation in fungi. PLoS Biol 6: e38. doi: 10.1371/journal.pbio.0060038 18303948

80. Borneman AR, Gianoulis TA, Zhang ZD, Yu H, Rozowsky J, et al. (2007) Divergence of transcription factor binding sites across related yeast species. Science 317: 815–819. doi: 10.1126/science.1140748 17690298

81. Bradley RK, Li XY, Trapnell C, Davidson S, Pachter L, et al. (2010) Binding site turnover produces pervasive quantitative changes in transcription factor binding between closely related Drosophila species. PLoS Biol 8: e1000343. doi: 10.1371/journal.pbio.1000343 20351773

82. Odom DT, Dowell RD, Jacobsen ES, Gordon W, Danford TW, et al. (2007) Tissue-specific transcriptional regulation has diverged significantly between human and mouse. Nat Genet 39: 730–732. doi: 10.1038/ng2047 17529977

83. Schmidt D, Wilson MD, Ballester B, Schwalie PC, Brown GD, et al. (2010) Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science 328: 1036–1040. doi: 10.1126/science.1186176 20378774

84. Kasowski M, Grubert F, Heffelfinger C, Hariharan M, Asabere A, et al. (2010) Variation in transcription factor binding among humans. Science 328: 232–235. doi: 10.1126/science.1183621 20299548

85. Zheng W, Zhao H, Mancera E, Steinmetz LM, Snyder M (2010) Genetic analysis of variation in transcription factor binding in yeast. Nature 464: 1187–1191. doi: 10.1038/nature08934 20237471

86. Pelham HRB, Brown DD (1980) A specific transcription factor that can bind either the 5S RNA gene or 5S RNA. PNAS 77: 4170–4174. doi: 10.1073/pnas.77.7.4170 7001457

87. Brayer KJ, Segal DJ (2008) Keep your fingers off my DNA: Protein—protein interactions mediated by C2H2 zinc finger domains. Cell Biochem Biophys 50: 111–131. doi: 10.1007/s12013-008-9008-5 18253864

88. Dermitzakis ET, Clark AG (2002) Evolution of transcription factor binding sites in mammalian gene regulatory regions: Conservation and turnover. Mol Biol Evol 19: 1114–1121. doi: 10.1093/oxfordjournals.molbev.a004169 12082130

89. Costas J, Casares F, Vieira J (2003) Turnover of binding sites for transcription factors involved in early Drosophila development. Gene 310: 215–220. doi: 10.1016/S0378-1119(03)00556-0 12801649

90. Moses AM, Pollard DA, Nix DA, Iyer VN, Li XY, et al. (2006) Large-scale turnover of functional transcription factor binding sites in Drosophila. PLoS Comput Biol 2: e130. doi: 10.1371/journal.pcbi.0020130 17040121

91. Doniger SW, Fay JC (2007) Frequent gain and loss of functional transcription factor binding sites. PLoS Comput Biol 3: e99. doi: 10.1371/journal.pcbi.0030099 17530920

92. Kim J, He X, Sinha S (2009) Evolution of regulatory sequences in 12 Drosophila species. PLoS Genet 5: e1000330. doi: 10.1371/journal.pgen.1000330 19132088

93. Venkataram S, Fay JC (2010) Is transcription factor binding site turnover a sufficient explanation for cis-regulatory sequence divergence? Genome Biol Evol 2: 851–858. doi: 10.1093/gbe/evq066 21068212

94. Weirauch MT, Hughes TR (2010) Conserved expression without conserved regulatory sequence: The more things change, the more they stay the same. Trends Genet 26: 66–74. doi: 10.1016/j.tig.2009.12.002 20083321

95. Tan K, Feizi H, Luo C, Fan SH, Ravasi T, et al. (2008) A systems approach to delineate functions of paralogous transcription factors: Role of the Yap family in the DNA damage response. PNAS 105: 2934–2939. doi: 10.1073/pnas.0708670105 18287073

96. Lespinet O, Wolf YI, Koonin EV, Aravind L (2002) The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res 12: 1048–1059. doi: 10.1101/gr.174302 12097341

97. Hamilton AT, Huntley S, Kim J, Branscomb E, Stubbs L (2003) Lineage-specific expansion of KRAB zinc-finger transcription factor genes: Implications for the evolution of vertebrate regulatory networks. CSHL Symposia on Quant Biol 68: 131–140. doi: 10.1101/sqb.2003.68.131

98. Urrutia R (2003) KRAB-containing zinc-finger repressor proteins. Genome Biol 4: 231. doi: 10.1186/gb-2003-4-10-231 14519192

99. Taylor JS, Raes J (2004) Duplication and divergence: The evolution of new genes and old ideas. Annu Rev Genet 38: 615–643. doi: 10.1146/annurev.genet.38.072902.092831 15568988

100. Brunkard JO, Runkel AM, Zambryski PC (2015) Comment on “A promiscuous intermediate underlies the evolution of LEAFY DNA binding specificity.” Science 347: 621. doi: 10.1126/science.1256011 25657240

101. Brockington SF, Moyroud E, Sayou C, Monniaux M, Nanao MH, et al. (2015) Response to Comment on “A promiscuous intermediate underlies the evolution of LEAFY DNA binding specificity.” Science 347: 621. doi: 10.1126/science.1256011 25657241

102. Hu TT, Eisen MB, Thornton KR, Andolfatto P (2013) A second-generation assembly of the Drosophila simulans genome provides new insights into patterns of lineage-specific divergence. Genome Res 23: 89–98. doi: 10.1101/gr.141689.112 22936249

103. Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7: e1002195. doi: 10.1371/journal.pcbi.1002195 22039361

104. Kent WJ (2002) Blat-the BLAST-Like Alignment Tool. Genome Res 12: 656–664. doi: 10.1101/gr.229202 11932250

105. Notredame C, Higgins DG, Heringa J (2000) T-coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 302: 205–217. doi: 10.1006/jmbi.2000.4042 10964570

106. Vernot B, Stolzer M, Goldman A, Durand D (2008) Reconciliation with non-binary species trees. J Comput Biol 15: 981–1006. doi: 10.1089/cmb.2008.0092 18808330

107. Kheradpour P, Stark A, Roy S, Kellis M (2007) Reliable prediction of regulator targets using 12 Drosophila genomes. Genome Res 17: 1919–1931. doi: 10.1101/gr.7090407 17989251

108. Jiang P, Singh M (2014) CCAT: Combinatorial Code Analysis Tool for transcriptional regulation. Nucleic Acids Res 42: 2833–2847. doi: 10.1093/nar/gkt1302 24366875

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#