The Role of China in the Global Spread of the Current Cholera Pandemic
Cholera is a life-threatening, diarrheal disease caused by the bacterium Vibrio cholerae. After a long interregnum of decades without epidemics, the seventh cholera pandemic spread globally since 1961, causing considerable morbidity and mortality. Our analysis of published and newly sequenced genomes provides details on genetic groupings within V. cholerae, so-called clades, that have developed during the recent pandemic spread of these bacteria, and, in some cases, persisted to modern times. We reconstructed some of the pathways taken by the current pandemic since its origins in Indonesia, and show that both South Asia and East Asia are important pathogenic reservoirs and sources of international transmissions.
Vyšlo v časopise:
The Role of China in the Global Spread of the Current Cholera Pandemic. PLoS Genet 11(3): e32767. doi:10.1371/journal.pgen.1005072
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1005072
Souhrn
Cholera is a life-threatening, diarrheal disease caused by the bacterium Vibrio cholerae. After a long interregnum of decades without epidemics, the seventh cholera pandemic spread globally since 1961, causing considerable morbidity and mortality. Our analysis of published and newly sequenced genomes provides details on genetic groupings within V. cholerae, so-called clades, that have developed during the recent pandemic spread of these bacteria, and, in some cases, persisted to modern times. We reconstructed some of the pathways taken by the current pandemic since its origins in Indonesia, and show that both South Asia and East Asia are important pathogenic reservoirs and sources of international transmissions.
Zdroje
1. Pollitzer R., Swaroop S., and Burrows W. (1959) World Incidence. In: Cholera. Geneva: WHO. pp. 51–96.
2. Pollitzer R., Swaroop S., and Burrows W. (1959) History of the disease. In: Cholera. Geneva: WHO. pp. 11–50.
3. Harris JB, LaRocque RC, Qadri F, Ryan ET, Calderwood SB (2012) Cholera. Lancet 379: 2466–2476. doi: 10.1016/S0140-6736(12)60436-X 22748592
4. Devault AM, Golding GB, Waglechner N, Enk JM, Kuch M, et al. (2014) Second-pandemic strain of Vibrio cholerae from the Philadelphia cholera outbreak of 1849. New England J Med 370: 334–340. doi: 10.1056/NEJMoa1308663 24401020
5. Chun J, Grim CJ, Hasan NA, Lee JH, Choi SY, et al. (2009) Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proc Natl Acad Sci USA 106: 15442–15447. doi: 10.1073/pnas.0907787106 19720995
6. Mutreja A, Kim DW, Thomson NR, Connor TR, Lee JH, et al. (2011) Evidence for several waves of global transmission in the seventh cholera pandemic. Nature 477: 462–465. doi: 10.1038/nature10392 21866102
7. Katz LS, Petkau A, Beaulaurier J, Tyler S, Antonova ES, et al. (2013) Evolutionary dynamics of Vibrio cholerae O1 following a single-source introduction to Haiti. MBio 4:
8. Chin CS, Sorenson J, Harris JB, Robins WP, Charles RC, et al. (2011) The origin of the Haitian cholera outbreak strain. New England J Med 364: 33–42. doi: 10.1056/NEJMoa1012928 21142692
9. Hendriksen RS, Price LB, Schupp JM, Gillece JD, Kaas RS, et al. (2011) Population genetics of Vibrio cholerae from Nepal in 2010: Evidence on the origin of the Haitian outbreak. MBio 2:
10. Liang W, Wang L, Liang P, Zheng X, Zhou H, et al. (2013) Sequence polymorphisms of rfbT among the Vibrio cholerae O1 strains in the Ogawa and Inaba serotype shifts. BMC Microbiol 13: 173. doi: 10.1186/1471-2180-13-173 23889924
11. Shah MA, Mutreja A, Thomson N, Baker S, Parkhill J, et al. (2014) Genomic epidemiology of Vibrio cholerae O1 associated with floods, Pakistan, 2010. Emerg Infect Dis 20: 13–20. doi: 10.3201/.eid2001.130428 24378019
12. Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, et al. (2000) DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406: 477–483. 10952301
13. Tanamal ST (1959) Notes on paracholera in Sulawesi (Celebes). Am J Trop Med Hyg 8: 72–78. 13617601
14. Felsenfeld O (1966) A review of recent trends in cholera research and control. With an annex on the isolation and identification of cholera vibrios. Bull World Health Organ 34: 161–195. 5328492
15. Didelot X, Falush D (2007) Inference of bacterial microevolution using multilocus sequence data. Genetics 175: 1251–1266. 17151252
16. Barua D. (1992) History of cholera. In: Barua D and Greenough III, W. B., editors. Cholera. New York: Plenum. pp. 1–35.
17. Luo HM, Zhang Y, Wang XQ, Yu WZ, Wen N, et al. (2013) Identification and control of a poliomyelitis outbreak in Xinjiang, China. N Engl J Med 369: 1981–1990. doi: 10.1056/NEJMoa1303368 24256377
18. Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J, et al. (2011) Rapid pneumococcal evolution in response to clinical interventions. Science 331: 430–434. doi: 10.1126/science.1198545 21273480
19. LeClerc JE, Li B, Payne WL, Cebula TA (1996) High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274: 1208–1211. 8895473
20. Sniegowski PD, Gerrish PJ, Lenski RE (1997) Evolution of high mutation rates in experimental populations of E. coli. Nature 387: 703–705. 9192894
21. Mao EF, Lane L, Lee J, Miller JH (1997) Proliferation of mutators in a cell population. J Bacteriol 179: 417–422. 8990293
22. Richardson AR, Yu Z, Popovic T, Stojiljkovic I (2002) Mutator clones of Neisseria meningitidis in epidemic serogroup A disease. Proc Natl Acad Sci USA 99: 6103–6107. 11983903
23. Morelli G, Song Y, Mazzoni CJ, Eppinger M, Roumagnac P, et al. (2010) Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity. Nature Genet 42: 1140–1143. doi: 10.1038/ng.705 21037571
24. Martinez JL, Baquero F (2000) Mutation frequencies and antibiotic resistance. Antimicrob Agents Chemother 44: 1771–1777. 10858329
25. Weigand MR, Sundin GW (2012) General and inducible hypermutation facilitate parallel adaptation in Pseudomonas aeruginosa despite divergent mutation spectra. Proc Natl Acad Sci USA 109: 13680–13685. doi: 10.1073/pnas.1205357109 22869726
26. Giraud A, Matic I, Tenaillon O, Clara A, Radman M, et al. (2001) Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291: 2606–2608. 11283373
27. Eisenstark A (2010) Genetic diversity among offspring from archived Salmonella enterica ssp. enterica serovar Typhimurium (Demerec Collection): in search of survival strategies. Annu Rev Microbiol 64: 277–292. doi: 10.1146/annurev.micro.091208.073614 20825350
28. Drummond AJ, Ho SY, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4: e88. 16683862
29. Didelot X, Bowden R, Wilson DJ, Peto TE, Crook DW (2012) Transforming clinical microbiology with bacterial genome sequencing. Nat Rev Genet 13: 601–612. doi: 10.1038/nrg3226 22868263
30. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, et al. (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19: 1639–1645. doi: 10.1101/gr.092759.109 19541911
31. Abel GJ, Sander N (2014) Quantifying global international migration flows. Science 343: 1520–1522. doi: 10.1126/science.1248676 24675962
32. Feng L, Reeves PR, Lan R, Ren Y, Gao C, et al. (2008) A recalibrated molecular clock and independent origins for the cholera pandemic clones. PLoS ONE 3: e4053. doi: 10.1371/journal.pone.0004053 19115014
33. Picard B, Duriez P, Gouriou S, Matic I, Denamur E, et al. (2001) Mutator natural Escherichia coli isolates have an unusual virulence phenotype. Infect Immun 69: 9–14. 11119483
34. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359. doi: 10.1038/nmeth.1923 22388286
35. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, et al. (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19: 455–477. doi: 10.1089/cmb.2012.0021 22506599
36. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, et al. (2004) Versatile and open software for comparing large genomes. Genome Biol 5: R12. 14759262
37. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, et al. (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40: e115. 22730293
38. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, et al. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst Biol 59: 307–321. doi: 10.1093/sysbio/syq010 20525638
39. Didelot X, Eyre DW, Cule M, Ip CL, Ansari MA, et al. (2012) Microevolutionary analysis of Clostridium difficile genomes to investigate transmission. Genome Biol 13: R118. doi: 10.1186/gb-2012-13-12-r118 23259504
40. Williams PD, Pollock DD, Blackburne BP, Goldstein RA (2006) Assessing the accuracy of ancestral protein reconstruction methods. PLoS Comput Biol 2: e69. 16789817
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2015 Číslo 3
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Clonality and Evolutionary History of Rhabdomyosarcoma
- Morphological Mutations: Lessons from the Cockscomb
- Maternal Filaggrin Mutations Increase the Risk of Atopic Dermatitis in Children: An Effect Independent of Mutation Inheritance
- Transcriptomic Profiling of Reveals Reprogramming of the Crp Regulon by Temperature and Uncovers Crp as a Master Regulator of Small RNAs