NLRC5 Exclusively Transactivates MHC Class I and Related Genes through a Distinctive SXY Module
Major histocompatibility complex class I (MHCI) molecules are central to immunity and immunological disorders, and constitute a major obstacle in organ transplantation. It is therefore vital to gain insight into the regulation of their expression. NLRC5 was recently found to regulate MHCI gene transcription. However, we lack a thorough understanding of its target gene specificity and mechanism of action. Our work addresses these questions, delineating the unique consensus sequence required for NLRC5 recruitment and pinpointing conserved features conferring its specificity. Furthermore, through genome-wide analyses, we confirm that NLRC5 regulates classical MHCI genes and identify novel target genes, all encoding non-classical MHCI molecules exerting an array of functions in immunity and tolerance. We thereby demonstrate that NLRC5 exclusively transactivates genes of the MHCI pathway, rendering it an attractive target for future therapeutic intervention. The most striking feature of NLRC5 is its restricted and highly focused transcriptional activity, which has been described so far only for one related factor, CIITA. NLRC5 and CIITA therefore emerge as prototypes for a novel kind of extremely specific transcriptional regulator.
Vyšlo v časopise:
NLRC5 Exclusively Transactivates MHC Class I and Related Genes through a Distinctive SXY Module. PLoS Genet 11(3): e32767. doi:10.1371/journal.pgen.1005088
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1005088
Souhrn
Major histocompatibility complex class I (MHCI) molecules are central to immunity and immunological disorders, and constitute a major obstacle in organ transplantation. It is therefore vital to gain insight into the regulation of their expression. NLRC5 was recently found to regulate MHCI gene transcription. However, we lack a thorough understanding of its target gene specificity and mechanism of action. Our work addresses these questions, delineating the unique consensus sequence required for NLRC5 recruitment and pinpointing conserved features conferring its specificity. Furthermore, through genome-wide analyses, we confirm that NLRC5 regulates classical MHCI genes and identify novel target genes, all encoding non-classical MHCI molecules exerting an array of functions in immunity and tolerance. We thereby demonstrate that NLRC5 exclusively transactivates genes of the MHCI pathway, rendering it an attractive target for future therapeutic intervention. The most striking feature of NLRC5 is its restricted and highly focused transcriptional activity, which has been described so far only for one related factor, CIITA. NLRC5 and CIITA therefore emerge as prototypes for a novel kind of extremely specific transcriptional regulator.
Zdroje
1. Reith W, Mach B (2001) The bare lymphocyte syndrome and the regulation of MHC expression. Annu Rev Immunol 19: 331–373. 11244040
2. Staehli F, Ludigs K, Heinz LX, Seguin-Estevez Q, Ferrero I, et al. (2012) NLRC5 deficiency selectively impairs MHC class I- dependent lymphocyte killing by cytotoxic T cells. J Immunol 188: 3820–3828. doi: 10.4049/jimmunol.1102671 22412192
3. Meissner TB, Li A, Biswas A, Lee KH, Liu YJ, et al. (2010) NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proc Natl Acad Sci U S A 107: 13794–13799. doi: 10.1073/pnas.1008684107 20639463
4. Robbins GR, Truax AD, Davis BK, Zhang L, Brickey WJ, et al. (2012) Regulation of class I major histocompatibility complex (MHC) by nucleotide-binding domain, leucine-rich repeat-containing (NLR) proteins. J Biol Chem 287: 24294–24303. doi: 10.1074/jbc.M112.364604 22645137
5. Biswas A, Meissner TB, Kawai T, Kobayashi KS (2012) Cutting edge: impaired MHC class I expression in mice deficient for Nlrc5/class I transactivator. J Immunol 189: 516–520. doi: 10.4049/jimmunol.1200064 22711889
6. Neerincx A, Castro W, Guarda G, Kufer TA (2013) NLRC5, at the Heart of Antigen Presentation. Front Immunol 4: 397. doi: 10.3389/fimmu.2013.00397 24319445
7. Yao Y, Wang Y, Chen F, Huang Y, Zhu S, et al. (2012) NLRC5 regulates MHC class I antigen presentation in host defense against intracellular pathogens. Cell Res 22: 836–847. doi: 10.1038/cr.2012.56 22491475
8. Meissner TB, Liu YJ, Lee KH, Li A, Biswas A, et al. (2012) NLRC5 cooperates with the RFX transcription factor complex to induce MHC class I gene expression. J Immunol 188: 4951–4958. doi: 10.4049/jimmunol.1103160 22490869
9. Neerincx A, Rodriguez GM, Steimle V, Kufer TA (2012) NLRC5 controls basal MHC class I gene expression in an MHC enhanceosome-dependent manner. J Immunol 188: 4940–4950. doi: 10.4049/jimmunol.1103136 22490867
10. Gobin SJ, Peijnenburg A, van Eggermond M, van Zutphen M, van den Berg R, et al. (1998) The RFX complex is crucial for the constitutive and CIITA-mediated transactivation of MHC class I and beta2-microglobulin genes. Immunity 9: 531–541. 9806639
11. Gobin SJ, van Zutphen M, Westerheide SD, Boss JM, van den Elsen PJ (2001) The MHC-specific enhanceosome and its role in MHC class I and beta(2)-microglobulin gene transactivation. J Immunol 167: 5175–5184. 11673530
12. Krawczyk M, Seguin-Estevez Q, Leimgruber E, Sperisen P, Schmid C, et al. (2008) Identification of CIITA regulated genetic module dedicated for antigen presentation. PLoS Genet 4: e1000058. doi: 10.1371/journal.pgen.1000058 18437201
13. Masternak K, Muhlethaler-Mottet A, Villard J, Zufferey M, Steimle V, et al. (2000) CIITA is a transcriptional coactivator that is recruited to MHC class II promoters by multiple synergistic interactions with an enhanceosome complex. Genes Dev 14: 1156–1166. 10809673
14. Garber M, Yosef N, Goren A, Raychowdhury R, Thielke A, et al. (2012) A high-throughput chromatin immunoprecipitation approach reveals principles of dynamic gene regulation in mammals. Mol Cell 47: 810–822. doi: 10.1016/j.molcel.2012.07.030 22940246
15. Krawczyk M, Peyraud N, Rybtsova N, Masternak K, Bucher P, et al. (2004) Long distance control of MHC class II expression by multiple distal enhancers regulated by regulatory factor X complex and CIITA. J Immunol 173: 6200–6210. 15528357
16. Rodgers JR, Cook RG (2005) MHC class Ib molecules bridge innate and acquired immunity. Nat Rev Immunol 5: 459–471. 15928678
17. van den Elsen PJ, Peijnenburg A, van Eggermond MC, Gobin SJ (1998) Shared regulatory elements in the promoters of MHC class I and class II genes. Immunol Today 19: 308–312. 9666603
18. Das G, Gould DS, Augustine MM, Fragoso G, Sciutto E, et al. (2000) Qa-2-dependent selection of CD8alpha/alpha T cell receptor alpha/beta(+) cells in murine intestinal intraepithelial lymphocytes. J Exp Med 192: 1521–1528. 11085754
19. Fragoso G, Lamoyi E, Mellor A, Lomeli C, Hernandez M, et al. (1998) Increased resistance to Taenia crassiceps murine cysticercosis in Qa-2 transgenic mice. Infect Immun 66: 760–764. 9453638
20. Wu L, Feng H, Warner CM (1999) Identification of two major histocompatibility complex class Ib genes, Q7 and Q9, as the Ped gene in the mouse. Biol Reprod 60: 1114–1119. 10208972
21. Crowley MP, Fahrer AM, Baumgarth N, Hampl J, Gutgemann I, et al. (2000) A population of murine gammadelta T cells that recognize an inducible MHC class Ib molecule. Science 287: 314–316. 10634788
22. Schild H, Mavaddat N, Litzenberger C, Ehrich EW, Davis MM, et al. (1994) The nature of major histocompatibility complex recognition by gamma delta T cells. Cell 76: 29–37. 8287478
23. Seach N, Guerri L, Le Bourhis L, Mburu Y, Cui Y, et al. (2013) Double-positive thymocytes select mucosal-associated invariant T cells. J Immunol 191: 6002–6009. doi: 10.4049/jimmunol.1301212 24244014
24. Bendelac A (1995) Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J Exp Med 182: 2091–2096. 7500054
25. Apps R, Qi Y, Carlson JM, Chen H, Gao X, et al. (2013) Influence of HLA-C expression level on HIV control. Science 340: 87–91. doi: 10.1126/science.1232685 23559252
26. van den Elsen PJ, Holling TM, Kuipers HF, van der Stoep N (2004) Transcriptional regulation of antigen presentation. Curr Opin Immunol 16: 67–75. 14734112
27. Wong D, Lee W, Humburg P, Makino S, Lau E, et al. (2014) Genomic mapping of the MHC transactivator CIITA using an integrated ChIP-seq and genetical genomics approach. Genome Biol 15: 494. 25366989
28. Chang CH, Guerder S, Hong SC, van Ewijk W, Flavell RA (1996) Mice lacking the MHC class II transactivator (CIITA) show tissue-specific impairment of MHC class II expression. Immunity 4: 167–178. 8624807
29. Clausen BE, Waldburger JM, Schwenk F, Barras E, Mach B, et al. (1998) Residual MHC class II expression on mature dendritic cells and activated B cells in RFX5-deficient mice. Immunity 8: 143–155. 9491996
30. Durand B, Sperisen P, Emery P, Barras E, Zufferey M, et al. (1997) RFXAP, a novel subunit of the RFX DNA binding complex is mutated in MHC class II deficiency. EMBO J 16: 1045–1055. 9118943
31. Masternak K, Peyraud N, Krawczyk M, Barras E, Reith W (2003) Chromatin remodeling and extragenic transcription at the MHC class II locus control region. Nat Immunol 4: 132–137. 12524537
32. Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, et al. (2012) ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res 22: 1813–1831. doi: 10.1101/gr.136184.111 22955991
33. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25. doi: 10.1186/gb-2009-10-3-r25 19261174
34. Liu T (2014) Use Model-Based Analysis of ChIP-Seq (MACS) to Analyze Short Reads Generated by Sequencing Protein-DNA Interactions in Embryonic Stem Cells. Methods Mol Biol 1150: 81–95. doi: 10.1007/978-1-4939-0512-6_4 24743991
35. Bembom O, Keles S, van der Laan MJ (2007) Supervised detection of conserved motifs in DNA sequences with cosmo. Stat Appl Genet Mol Biol 6: Article8.
36. Team RDC (2011) R: A Language and Environment for Statistical Computing. Vienna, Austria: the R Foundation for Statistical Computing: Available online at http://www.R-project.org/.
37. Guarda G, Braun M, Staehli F, Tardivel A, Mattmann C, et al. (2011) Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity 34: 213–223. doi: 10.1016/j.immuni.2011.02.006 21349431
38. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5: 113. 15318951
39. Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21: 2104–2105. 15647292
40. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, et al. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59: 307–321. doi: 10.1093/sysbio/syq010 20525638
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2015 Číslo 3
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Clonality and Evolutionary History of Rhabdomyosarcoma
- Morphological Mutations: Lessons from the Cockscomb
- Maternal Filaggrin Mutations Increase the Risk of Atopic Dermatitis in Children: An Effect Independent of Mutation Inheritance
- Transcriptomic Profiling of Reveals Reprogramming of the Crp Regulon by Temperature and Uncovers Crp as a Master Regulator of Small RNAs