#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Gain-of-Function Mutation in Impeded Bone Development through Increasing Expression in DA2B Mice


Distal arthrogryposis type 2B (DA2B) is an autosomal dominant genetic disorder. The typical clinical features of DA2B include hand and/or foot contracture and shortness of stature in patients. To date, mutations in TNNI2 can explain approximately 20% of familial incidences of DA2B. TNNI2 encodes a subunit of the Tn complex, which is required for calcium-dependent fast twitch muscle fiber contraction. In the absence of Ca2+ ions, TNNI2 impedes sarcomere contraction. Here, we reported a knock-in mouse carrying a DA2B mutation TNNI2 (K175del) had typical limb abnormality and small body size that observed in human DA2B. However, the small body did not seem to be convincingly explained using the present knowledge of TNNI2 associated skeletal muscle contraction. Our findings showed that the Tnni2K175del mutation impaired bone development of Tnni2K175del mice. Our data further showed that the mutant tnni2 protein had a higher capacity to transactivate Hif3a than the wild-type protein and led to a reduction in Vegf expression in bone of DA2B mice. Taken together, our findings demonstrated that the disease-associated Tnni2K175del mutation caused bone defects, which accounted for, at least in part, the small body size of Tnni2K175del mice. Our data also suggested, for the first time, a novel role of tnni2 in the regulation of bone development of mice by affecting Hif-vegf signaling.


Vyšlo v časopise: A Gain-of-Function Mutation in Impeded Bone Development through Increasing Expression in DA2B Mice. PLoS Genet 10(10): e32767. doi:10.1371/journal.pgen.1004589
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004589

Souhrn

Distal arthrogryposis type 2B (DA2B) is an autosomal dominant genetic disorder. The typical clinical features of DA2B include hand and/or foot contracture and shortness of stature in patients. To date, mutations in TNNI2 can explain approximately 20% of familial incidences of DA2B. TNNI2 encodes a subunit of the Tn complex, which is required for calcium-dependent fast twitch muscle fiber contraction. In the absence of Ca2+ ions, TNNI2 impedes sarcomere contraction. Here, we reported a knock-in mouse carrying a DA2B mutation TNNI2 (K175del) had typical limb abnormality and small body size that observed in human DA2B. However, the small body did not seem to be convincingly explained using the present knowledge of TNNI2 associated skeletal muscle contraction. Our findings showed that the Tnni2K175del mutation impaired bone development of Tnni2K175del mice. Our data further showed that the mutant tnni2 protein had a higher capacity to transactivate Hif3a than the wild-type protein and led to a reduction in Vegf expression in bone of DA2B mice. Taken together, our findings demonstrated that the disease-associated Tnni2K175del mutation caused bone defects, which accounted for, at least in part, the small body size of Tnni2K175del mice. Our data also suggested, for the first time, a novel role of tnni2 in the regulation of bone development of mice by affecting Hif-vegf signaling.


Zdroje

1. KrakowiakPA, O'QuinnJR, BohnsackJF, WatkinsWS, CareyJC, et al. (1997) A variant of Freeman-Sheldon.syndrome maps to 11p15.5-pter. Am J Hum Genet 60: 426–432.

2. TajsharghiH, KimberE, HolmgrenD, TuliniusM, OldforsA (2007) Distal arthrogryposis and muscle weakness associated with a beta-tropomyosin mutation. Neurology 68: 772–5.

3. ToydemirRM, BamshadMJ (2009) Sheldon-Hall syndrome. Orphanet J Rare Dis 23: 4–11.

4. SyskaH, WilkinsonJM, GrandRJ, PerrySV (1976) The relationship between biological activity and primary structure of troponin I from white skeletal muscle of the rabbit. Biochem J 153: 375–387.

5. FarahCS, MiyamotoCA, RamosCH, da SilvaAC, QuaggioRB, et al. (1994) Structural and regulatory functions of the NH2- and COOH-terminal regions of skeletal muscle troponin I. J Biol Chem 269: 5230–5240.

6. SungSS, BrassingtonAM, GrannattK, RutherfordA, WhitbyFG, et al. (2003) Mutations in genes encoding fast-twitch contractile proteins cause distal arthrogryposis syndromes. Am J Hum Genet 72: 681–690.

7. KimberE, TajsharghiH, KroksmarkAK, OldforsA, TuliniusM (2006) A mutation in the fast skeletal muscle troponin I gene causes myopathy and distal arthrogryposis. Neurology 67: 597–601.

8. ShrimptonAE, HooJJ (2006) A TNNI2 mutation in a family with distal arthrogryposis type 2B. Eur J Med Genet 49: 201–206.

9. DreraB, ZoppiN, BarlatiS, ColombiM (2006) Recurrence of the p.R156X TNNI2 mutation in distal arthrogryposis type 2B. Clin Genet 70: 532–534.

10. JiangM, ZhaoX, HanW, BianC, LiX, et al. (2006) A novel deletion in TNNI2 causes distal arthrogryposis in a large Chinese family with marked variability of expression. Hum Genet 120: 238–242.

11. DigelJ, AbugoO, KobayashiT, GryczynskiZ, LakowiczJR, et al. (2001) Calcium- and magnesium-dependent interactions between the C-terminus of troponin I and the N-terminal, regulatory domain of troponin C. Arch Biochem Biophys 387: 243–9.

12. BurtonD, AbdulrazzakH, KnottA, ElliottK, RedwoodC, et al. (2002) Two mutations in troponin I that cause hypertrophic cardiomyopathy have contrasting effects on cardiac muscle contractility. Biochem J 362: 443–51.

13. RobinsonP, LipscombS, PrestonLC, AltinE, WatkinsH, et al. (2007) Mutations in fast skeletal troponin I, troponin T, and beta-tropomyosin that cause distal arthrogryposis all increase contractile function. FASEB J 21: 896–905.

14. HallJG, ReedSD, GreeneG (1982) The distal arthrogryposes: delineation of new entities–review and nosologic discussion. Am J Med Genet 11: 185–239.

15. ReissJA, SheffieldLJ (1986) Distal arthrogryposis type II: a family with varying congenital abnormalities. Am J Med Genet 24: 255–267.

16. ManaloDJ, RowanA, LavoieT, NatarajanL, KellyBD, et al. (2005) Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105: 659–669.

17. SchipaniE, RyanHE, DidricksonS, KobayashiT, KnightM, et al. (2001) Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival. Genes Dev 15: 2865–2876.

18. ZelzerE, McLeanW, NgYS, FukaiN, ReginatoAM, et al. (2002) Skeletal defects in VEGF(120/120) mice reveal multiple roles for VEGF in skeletogenesis. Development 129: 1893–1904.

19. OtomoH, SakaiA, UchidaS, TanakaS, WatanukiM, et al. (2007) Flt-1 tyrosine kinase-deficient homozygous mice result in decreased trabecular bone volume with reduced osteogenic potential. Bone 40: 1494–501.

20. NiidaS, KondoT, HiratsukaS, HayashiS, AmizukaN, et al. (2005) VEGF receptor 1 signaling is essential for osteoclast development and bone marrow formation in colony-stimulating factor 1-deficient mice. Proc Natl Acad Sci U S A 102: 14016–14021.

21. AugsteinA, PoitzDM, Braun-DullaeusRC, StrasserRH, SchmeisserA (2010) Cell-specific and hypoxia-dependent regulation of human HIF-3alpha: inhibition of the expression of HIF target genes in vascular cells. Cell Mol Life Sci 68: 2627–2642.

22. HeikkiläM, PasanenA, KivirikkoKI, MyllyharjuJ (2011) Roles of the human hypoxia-inducible factor (HIF)-3a variants in the hypoxia response. Cell Mol Life Sci 68: 3885–901.

23. MakinoY, CaoR, SvenssonK, BertilssonG, AsmanM, et al. (2001) Berkenstam A, Poellinger L. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414: 550–554.

24. MaesC, StockmansI, MoermansK, Van LooverenR, SmetsN, et al. (2004) Soluble VEGF isoforms are essential for establishing epiphyseal vascularization and regulating chondrocyte development and survival. J Clin Invest 113: 188–199.

25. GerberHP, VuTH, RyanAM, KowalskiJ, WerbZ, et al. (1999) VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5: 623–628.

26. MaesC, GoossensS, BartunkovaS, DrogatB, CoenegrachtsL, et al. (2009) Increased skeletal VEGF enhances beta-catenin activity and results in excessively ossified bones. EMBO J 29: 424–441.

27. BaudCA (1968) Submicroscopic structure and functional aspects of the osteocyte. Clin Orthop Relat Res 56: 227–236.

28. EkanayakeS, HallBK (1988) Ultrastructure of the osteogenesis of acellular vertebral bone in the Japanese medaka, Oryzias latipes (Teleostei, Cyprinidontidae). Am J Anat 182: 241–249.

29. MaesC, CarmelietP, MoermansK, StockmansI, SmetsN, et al. (2002) Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mech Dev 111: 61–73.

30. HaraS, HamadaJ, KobayashiC, KondoY, ImuraN (2001) Expression and characterization of hypoxia-inducible factor (HIF)-3alpha in human kidney: suppression of HIF-mediated gene expression by HIF-3alpha. Biochem Biophys Res Commun 287: 808–813.

31. MaynardMA, EvansAJ, HosomiT, HaraS, JewettMA, et al. (2005) Human HIF-3alpha4 is a dominant-negative regulator of HIF-1 and is down-regulated in renal cell carcinoma. FASEB J 19: 1396–1406.

32. WangY, WanC, DengL, LiuX, CaoX, et al. (2007) The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest 117: 1616–1626.

33. ZelzerE, GlotzerDJ, HartmannC, ThomasD, FukaiN, et al. (2001) Tissue specific regulation of VEGF expression during bone development requires Cbfa1/Runx2. Mech Dev 106: 97–106.

34. MosesMA, WiederschainD, WuI, FernandezCA, GhazizadehV, et al. (1999) Troponin I is present in human cartilage and inhibits angiogenesis. Proc Natl Acad Sci U S A 96: 2645–50.

35. KernBE, BalcomJH, AntoniuBA, WarshawAL, Fernandez-del CastilloC (2003) Troponin I peptide (Glu94-Leu123), a cartilage-derived angiogenesis inhibitor: in vitro and in vivo effects on human endothelial cells and on pancreatic cancer. J Gastrointest Surg 7: 961–968.

36. FeldmanL, RouleauC (2002) Troponin I inhibits capillary endothelial cell proliferation by interaction with the cell's bFGF receptor. Microvasc Res 63: 41–9.

37. SchmidtK, HoffendJ, AltmannA, KiesslingF, StraussL, et al. (2006) Troponin I overexpression inhibits tumor growth, perfusion, and vascularization of morris hepatoma. J Nucl Med 47: 1506–14.

38. TajsharghiH, KimberE, KroksmarkAK, JerreR, TuliniusM, et al. (2008) Embryonic myosin heavy-chain mutations cause distal arthrogryposis and developmental myosin myopathy that persists postnatally. Arch Neurol 65: 1083–90.

39. ZhangJ, LazarenkoOP, BlackburnML, ShankarK, BadgerTM, et al. (2011) Feeding blueberry diets in early life prevent senescence of osteoblasts and bone loss in ovariectomized adult female rats. PLoS One 6: e24486.

40. DasSK, WangXN, PariaBC, DammD, AbrahamJA, et al. (1994) Heparin-binding EGF-like growth factor gene is induced in the mouse uterus temporally by the blastocyst solely at the site of its apposition: a possible ligand for interaction with blastocyst EGF-receptor in implantation. Development 120: 1071–1083.

41. Ecarot-CharrierB, GlorieuxFH, van der RestM, PereiraG (1983) Osteoblasts isolated from mouse calvaria initiate matrix mineralization in culture. J Cell Biol 96: 639–643.

42. SubramanianA, TamayoP, MoothaVK, MukherjeeS, EbertBL, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545–50.

43. SchmidtD, WilsonMD, SpyrouC, BrownGD, HadfieldJ, et al. (2009) ChIP-seq: using high-throughput sequencing to discover protein-DNA interactions. Methods 48: 240–248.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#