The Not5 Subunit of the Ccr4-Not Complex Connects Transcription and Translation
In this work we show that, both in the nucleus and in the cytoplasm, Not5 plays a “bridging” role for RNA Polymerase II. In the cytoplasm, Not5 interacts with the mRNA encoding the largest subunit of RNA polymerase II Rpb1 and supports the association of a co-chaperone to newly produced protein, to keep it soluble and assembly competent. In the nucleus, Not5 interacts with the Rpb4 subunit of polymerase that is known to readily dissociate from the rest of the polymerase, and it is essential for Rpb4 to associate with mRNAs at the completion of transcription to contribute to translation and mRNA degradation in the cytoplasm. Hence our data define Not5 as a key player in the cross-talk between different stages of eukaryotic gene expression: Not5 impacts on production of polymerase, hence transcription, during translation, and on Rpb4 mRNA association, hence translation and mRNA degradation during transcription.
Vyšlo v časopise:
The Not5 Subunit of the Ccr4-Not Complex Connects Transcription and Translation. PLoS Genet 10(10): e32767. doi:10.1371/journal.pgen.1004569
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004569
Souhrn
In this work we show that, both in the nucleus and in the cytoplasm, Not5 plays a “bridging” role for RNA Polymerase II. In the cytoplasm, Not5 interacts with the mRNA encoding the largest subunit of RNA polymerase II Rpb1 and supports the association of a co-chaperone to newly produced protein, to keep it soluble and assembly competent. In the nucleus, Not5 interacts with the Rpb4 subunit of polymerase that is known to readily dissociate from the rest of the polymerase, and it is essential for Rpb4 to associate with mRNAs at the completion of transcription to contribute to translation and mRNA degradation in the cytoplasm. Hence our data define Not5 as a key player in the cross-talk between different stages of eukaryotic gene expression: Not5 impacts on production of polymerase, hence transcription, during translation, and on Rpb4 mRNA association, hence translation and mRNA degradation during transcription.
Zdroje
1. HsinJP, ManleyJL (2012) The RNA polymerase II CTD coordinates transcription and RNA processing. Genes & development 26: 2119–2137.
2. AguileraA (2005) Cotranscriptional mRNP assembly: from the DNA to the nuclear pore. Current opinion in cell biology 17: 242–250.
3. de AlmeidaSF, Carmo-FonsecaM (2008) The CTD role in cotranscriptional RNA processing and surveillance. FEBS letters 582: 1971–1976.
4. Harel-SharvitL, EldadN, HaimovichG, BarkaiO, DuekL, et al. (2010) RNA polymerase II subunits link transcription and mRNA decay to translation. Cell 143: 552–563.
5. Goler-BaronV, SelitrennikM, BarkaiO, HaimovichG, LotanR, et al. (2008) Transcription in the nucleus and mRNA decay in the cytoplasm are coupled processes. Genes & development 22: 2022–2027.
6. CollartMA, PanasenkoOO (2012) The Ccr4–not complex. Gene 492: 42–53.
7. CollartMA (2003) Global control of gene expression in yeast by the Ccr4-Not complex. Gene 313: 1–16.
8. AlbertTK, LemaireM, van BerkumNL, GentzR, CollartMA, et al. (2000) Isolation and characterization of human orthologs of yeast CCR4-NOT complex subunits. Nucleic acids research 28: 809–817.
9. TemmeC, ZhangL, KremmerE, IhlingC, ChartierA, et al. (2010) Subunits of the Drosophila CCR4-NOT complex and their roles in mRNA deadenylation. RNA 16: 1356–1370.
10. LauNC, KolkmanA, van SchaikFM, MulderKW, PijnappelWW, et al. (2009) Human Ccr4-Not complexes contain variable deadenylase subunits. The Biochemical journal 422: 443–453.
11. BawankarP, LohB, WohlboldL, SchmidtS, IzaurraldeE (2013) NOT10 and C2orf29/NOT11 form a conserved module of the CCR4-NOT complex that docks onto the NOT1 N-terminal domain. RNA biology 10
12. MauxionF, PreveB, SeraphinB (2012) C2ORF29/CNOT11 and CNOT10 form a new module of the CCR4-NOT complex. RNA biology 10
13. FarberV, ErbenE, SharmaS, StoecklinG, ClaytonC (2013) Trypanosome CNOT10 is essential for the integrity of the NOT deadenylase complex and for degradation of many mRNAs. Nucleic acids research 41: 1211–1222.
14. DeluenC, JamesN, MailletL, MolineteM, TheilerG, et al. (2002) The Ccr4-not complex and yTAF1 (yTaf(II)130p/yTaf(II)145p) show physical and functional interactions. Molecular and cellular biology 22: 6735–6749.
15. SwansonMJ, QiuH, SumibcayL, KruegerA, KimSJ, et al. (2003) A multiplicity of coactivators is required by Gcn4p at individual promoters in vivo. Molecular and cellular biology 23: 2800–2820.
16. VentersBJ, WachiS, MavrichTN, AndersenBE, JenaP, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Molecular cell 41: 480–492.
17. KrukJA, DuttaA, FuJ, GilmourDS, ReeseJC (2011) The multifunctional Ccr4-Not complex directly promotes transcription elongation. Genes & development 25: 581–593.
18. LenssenE, JamesN, PedruzziI, DuboulozF, CameroniE, et al. (2005) The Ccr4-Not complex independently controls both Msn2-dependent transcriptional activation—via a newly identified Glc7/Bud14 type I protein phosphatase module—and TFIID promoter distribution. Molecular and cellular biology 25: 488–498.
19. TuckerM, Valencia-SanchezMA, StaplesRR, ChenJ, DenisCL, et al. (2001) The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104: 377–386.
20. WahleE, WinklerGS (2013) RNA decay machines: Deadenylation by the Ccr4-Not and Pan2-Pan3 complexes. Biochimica et biophysica acta 1829: 561–570.
21. PanasenkoOO, CollartMA (2012) Presence of Not5 and ubiquitinated Rps7A in polysome fractions depends upon the Not4 E3 ligase. Molecular microbiology 83: 640–653.
22. DimitrovaLN, KurohaK, TatematsuT, InadaT (2009) Nascent peptide-dependent translation arrest leads to Not4p-mediated protein degradation by the proteasome. The Journal of biological chemistry 284: 10343–10352.
23. HalterD, CollartMA, PanasenkoOO (2014) The Not4 E3 ligase and CCR4 deadenylase play distinct roles in protein quality control. PloS one 9: e86218.
24. PanasenkoOO, CollartMA (2011) Not4 E3 ligase contributes to proteasome assembly and functional integrity in part through Ecm29. Molecular and cellular biology 31: 1610–1623.
25. Dori-BachashM, ShemaE, TiroshI (2011) Coupled evolution of transcription and mRNA degradation. PLoS biology 9: e1001106.
26. CramerP (2002) Multisubunit RNA polymerases. Current opinion in structural biology 12: 89–97.
27. WildT, CramerP (2012) Biogenesis of multisubunit RNA polymerases. Trends in biochemical sciences 37: 99–105.
28. BoulonS, Pradet-BaladeB, VerheggenC, MolleD, BoireauS, et al. (2010) HSP90 and its R2TP/Prefoldin-like cochaperone are involved in the cytoplasmic assembly of RNA polymerase II. Molecular cell 39: 912–924.
29. BoulonS, BertrandE, Pradet-BaladeB (2012) HSP90 and the R2TP co-chaperone complex: building multi-protein machineries essential for cell growth and gene expression. RNA biology 9: 148–154.
30. KakiharaY, HouryWA (2012) The R2TP complex: discovery and functions. Biochimica et biophysica acta 1823: 101–107.
31. CzekoE, SeizlM, AugsbergerC, MielkeT, CramerP (2011) Iwr1 directs RNA polymerase II nuclear import. Molecular cell 42: 261–266.
32. StaresincicL, WalkerJ, Dirac-SvejstrupAB, MitterR, SvejstrupJQ (2011) GTP-dependent binding and nuclear transport of RNA polymerase II by Npa3 protein. The Journal of biological chemistry 286: 35553–35561.
33. ForgetD, LacombeAA, CloutierP, Al-KhouryR, BouchardA, et al. (2010) The protein interaction network of the human transcription machinery reveals a role for the conserved GTPase RPAP4/GPN1 and microtubule assembly in nuclear import and biogenesis of RNA polymerase II. Molecular & cellular proteomics: MCP 9: 2827–2839.
34. Miron-GarciaMC, Garrido-GodinoAI, Garcia-MolineroV, Hernandez-TorresF, Rodriguez-NavarroS, et al. (2013) The prefoldin bud27 mediates the assembly of the eukaryotic RNA polymerases in an rpb5-dependent manner. PLoS genetics 9: e1003297.
35. LotanR, Bar-OnVG, Harel-SharvitL, DuekL, MelamedD, et al. (2005) The RNA polymerase II subunit Rpb4p mediates decay of a specific class of mRNAs. Genes & development 19: 3004–3016.
36. SelitrennikM, DuekL, LotanR, ChoderM (2006) Nucleocytoplasmic shuttling of the Rpb4p and Rpb7p subunits of Saccharomyces cerevisiae RNA polymerase II by two pathways. Eukaryotic cell 5: 2092–2103.
37. DahanN, ChoderM (2013) The eukaryotic transcriptional machinery regulates mRNA translation and decay in the cytoplasm. Biochimica et biophysica acta 1829: 169–173.
38. DuncanCD, MataJ (2011) Widespread cotranslational formation of protein complexes. PLoS genetics 7: e1002398.
39. CollartM, PanasenkoO, NikolaevS (2012) The Not3/5 subunit of the Ccr4-Not complex: A central regulator of gene expression that integrates signals between the cytoplasm and the nucleus in eukaryotic cells. Cellular signalling
40. MailletL, TuC, HongYK, ShusterEO, CollartMA (2000) The essential function of Not1 lies within the Ccr4-Not complex. Journal of molecular biology 303: 131–143.
41. FaragoM, NahariT, HammelC, ColeCN, ChoderM (2003) Rpb4p, a subunit of RNA polymerase II, mediates mRNA export during stress. Molecular biology of the cell 14: 2744–2755.
42. LotanR, Goler-BaronV, DuekL, HaimovichG, ChoderM (2007) The Rpb7p subunit of yeast RNA polymerase II plays roles in the two major cytoplasmic mRNA decay mechanisms. The Journal of cell biology 178: 1133–1143.
43. ChenX, RuggieroC, LiS (2007) Yeast Rpb9 plays an important role in ubiquitylation and degradation of Rpb1 in response to UV-induced DNA damage. Molecular and cellular biology 27: 4617–4625.
44. AzzouzN, PanasenkoOO, DeluenC, HsiehJ, TheilerG, et al. (2009) Specific roles for the Ccr4-Not complex subunits in expression of the genome. RNA 15: 377–383.
45. ReeseJC (2013) The control of elongation by the yeast Ccr4-not complex. Biochimica et biophysica acta 1829: 127–133.
46. OberholzerU, CollartMA (1998) Characterization of NOT5 that encodes a new component of the Not protein complex. Gene 207: 61–69.
47. WoychikNA, YoungRA (1989) RNA polymerase II subunit RPB4 is essential for high- and low-temperature yeast cell growth. Molecular and cellular biology 9: 2854–2859.
48. ChoderM (2004) Rpb4 and Rpb7: subunits of RNA polymerase II and beyond. Trends in biochemical sciences 29: 674–681.
49. SampathV, SadhaleP (2005) Rpb4 and Rpb7: a sub-complex integral to multi-subunit RNA polymerases performs a multitude of functions. IUBMB life 57: 93–102.
50. CollartMA (2013) The NOT4 RING E3 ligase: a relevant player in co-translational quality control. ISRN Molecular Biology 2013: 548359.
51. NanoN, HouryWA (2013) Chaperone-like activity of the AAA+ proteins Rvb1 and Rvb2 in the assembly of various complexes. Philosophical transactions of the Royal Society of London Series B, Biological sciences 368: 20110399.
52. JansenG, WuC, SchadeB, ThomasDY, WhitewayM (2005) Drag&Drop cloning in yeast. Gene 344: 43–51.
53. PanasenkoO, LandrieuxE, FeuermannM, FinkaA, PaquetN, et al. (2006) The yeast Ccr4-Not complex controls ubiquitination of the nascent-associated polypeptide (NAC-EGD) complex. The Journal of biological chemistry 281: 31389–31398.
54. CollartMA, StruhlK (1994) NOT1(CDC39), NOT2(CDC36), NOT3, and NOT4 encode a global-negative regulator of transcription that differentially affects TATA-element utilization. Genes & development 8: 525–537.
55. PfafflMW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic acids research 29: e45.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2014 Číslo 10
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- The Master Activator of IncA/C Conjugative Plasmids Stimulates Genomic Islands and Multidrug Resistance Dissemination
- A Splice Mutation in the Gene Causes High Glycogen Content and Low Meat Quality in Pig Skeletal Muscle
- Keratin 76 Is Required for Tight Junction Function and Maintenance of the Skin Barrier
- A Role for Taiman in Insect Metamorphosis