Licensing of Yeast Centrosome Duplication Requires Phosphoregulation of Sfi1
Chromosomes are replicated during the cell cycle and distributed to two progeny cells on a machine called the spindle, such that each cell has one complete copy of the genome. The chromosomes are moved by attachment to the long microtubule polymers of the mitotic spindle, formed from a centrosome at each end of the spindle. Mechanisms that restrict DNA replication and centrosome duplication to once per cell cycle are critical, as defects in either event result in genetic instability and are associated with cancer. Cell cycle-dependent control of DNA replication has been extensively studied, but comparatively little is known about the regulation of centrosome duplication, particularly its restriction to once per cell cycle. Using genetics and cytology, including super-resolution imaging to detect reduplicated centrosomes, we show that cyclin-dependent kinase phosphorylation of Sfi1, a conserved component of centrosomes, prevents the occurrence of extra rounds of yeast centrosome duplication during the cell cycle. Additionally, we propose that dephosphorylation of Sfi1 by the phosphatase Cdc14 permits centrosome duplication for the next cell cycle. Our work is the first to provide a mechanism for how centrosome duplication, like DNA replication, occurs once during the cell cycle through cyclin-dependent kinase regulation.
Vyšlo v časopise:
Licensing of Yeast Centrosome Duplication Requires Phosphoregulation of Sfi1. PLoS Genet 10(10): e32767. doi:10.1371/journal.pgen.1004666
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004666
Souhrn
Chromosomes are replicated during the cell cycle and distributed to two progeny cells on a machine called the spindle, such that each cell has one complete copy of the genome. The chromosomes are moved by attachment to the long microtubule polymers of the mitotic spindle, formed from a centrosome at each end of the spindle. Mechanisms that restrict DNA replication and centrosome duplication to once per cell cycle are critical, as defects in either event result in genetic instability and are associated with cancer. Cell cycle-dependent control of DNA replication has been extensively studied, but comparatively little is known about the regulation of centrosome duplication, particularly its restriction to once per cell cycle. Using genetics and cytology, including super-resolution imaging to detect reduplicated centrosomes, we show that cyclin-dependent kinase phosphorylation of Sfi1, a conserved component of centrosomes, prevents the occurrence of extra rounds of yeast centrosome duplication during the cell cycle. Additionally, we propose that dephosphorylation of Sfi1 by the phosphatase Cdc14 permits centrosome duplication for the next cell cycle. Our work is the first to provide a mechanism for how centrosome duplication, like DNA replication, occurs once during the cell cycle through cyclin-dependent kinase regulation.
Zdroje
1. GanemNJ, GodinhoSA, PellmanD (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460: 278–282 doi:10.1038/nature08136
2. HaaseSB, WineyM, ReedSI (2001) Multi-step control of spindle pole body duplication by cyclin-dependent kinase. Nat Cell Biol 3: 38–42 doi:10.1038/35050543
3. VidwansSJ, WongML, O'FarrellPH (2003) Anomalous centriole configurations are detected in Drosophila wing disc cells upon Cdk1 inactivation. J Cell Sci 116: 137–143.
4. TsouM-FB, StearnsT (2006) Mechanism limiting centrosome duplication to once per cell cycle. Nature 442: 947–951 doi:10.1038/nature04985
5. TsouM-FB, WangW-J, GeorgeKA, UryuK, StearnsT, et al. (2009) Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells. Dev Cell 17: 344–354 doi:10.1016/j.devcel.2009.07.015
6. UbersaxJA, WoodburyEL, QuangPN, ParazM, BlethrowJD, et al. (2003) Targets of the cyclin-dependent kinase Cdk1. Nature 425: 859–864 doi:10.1038/nature02062
7. JaspersenSL, WineyM (2004) The budding yeast spindle pole body: structure, duplication, and function. Annu Rev Cell Dev Biol 20: 1–28 doi:10.1146/annurev.cellbio.20.022003.114106
8. JaspersenSL, HuneycuttBJ, GiddingsTH, ResingKA, AhnNG, et al. (2004) Cdc28/Cdk1 regulates spindle pole body duplication through phosphorylation of Spc42 and Mps1. Dev Cell 7: 263–274 doi:10.1016/j.devcel.2004.07.006
9. HuismanSM, SmeetsMFMA, SegalM (2007) Phosphorylation of Spc110p by Cdc28p-Clb5p kinase contributes to correct spindle morphogenesis in S. cerevisiae. J Cell Sci 120: 435–446 doi:10.1242/jcs.03342
10. LinT, GombosL, NeunerA, SebastianD, OlsenJV, et al. (2011) Phosphorylation of the yeast γ-tubulin Tub4 regulates microtubule function. PloS One 6: e19700 doi:10.1371/journal.pone.0019700
11. KeckJM, JonesMH, WongCCL, BinkleyJ, ChenD, et al. (2011) A cell cycle phosphoproteome of the yeast centrosome. Science 332: 1557–1561 doi:10.1126/science.1205193
12. LiangF, RichmondD, WangY (2013) Coordination of chromatid separation and spindle elongation by antagonistic activities of mitotic and S-phase CDKs. PLoS Genet 9: e1003319 doi:10.1371/journal.pgen.1003319
13. LinT-C, NeunerA, SchlosserYT, ScharfAN, WeberL, et al. (2014) Cell-cycle dependent phosphorylation of yeast pericentrin regulates γ-TuSC-mediated microtubule nucleation. eLife 3: e02208 doi:10.7554/eLife.02208
14. ElserafyM, SarićM, NeunerA, LinT-C, ZhangW, et al. (2014) Molecular Mechanisms that Restrict Yeast Centrosome Duplication to One Event per Cell Cycle. Curr Biol 24: 1456–1466 doi:10.1016/j.cub.2014.05.032
15. MaP, WinderickxJ, NauwelaersD, DumortierF, De DonckerA, et al. (1999) Deletion of SFI1, a novel suppressor of partial Ras-cAMP pathway deficiency in the yeast Saccharomyces cerevisiae, causes G(2) arrest. Yeast 15: 1097–1109.
16. KilmartinJV (2003) Sfi1p has conserved centrin-binding sites and an essential function in budding yeast spindle pole body duplication. J Cell Biol 162: 1211–1221 doi:10.1083/jcb.200307064
17. LeeI-J, WangN, HuW, SchottK, BählerJ, et al. (2014) Regulation of spindle-pole body assembly and cytokinesis by the centrin-binding protein Sfi1 in fission yeast. Mol Biol Cell mbc.E13–11–0699 doi:10.1091/mbc.E13-11-0699
18. LiS, SandercockAM, ConduitP, RobinsonCV, WilliamsRL, et al. (2006) Structural role of Sfi1p-centrin filaments in budding yeast spindle pole body duplication. J Cell Biol 173: 867–877 doi:10.1083/jcb.200603153
19. JonesMH, WineyM (2006) Centrosome duplication: is asymmetry the clue? Curr Biol CB 16: R808–810 doi:10.1016/j.cub.2006.08.041
20. BloomJ, CristeaIM, ProckoAL, LubkovV, ChaitBT, et al. (2011) Global analysis of Cdc14 phosphatase reveals diverse roles in mitotic processes. J Biol Chem 286: 5434–5445 doi:10.1074/jbc.M110.205054
21. ChiA, HuttenhowerC, GeerLY, CoonJJ, SykaJEP, et al. (2007) Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc Natl Acad Sci U S A 104: 2193–2198 doi:10.1073/pnas.0607084104
22. VisintinR, CraigK, HwangES, PrinzS, TyersM, et al. (1998) The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol Cell 2: 709–718.
23. StegmeierF, AmonA (2004) Closing mitosis: the functions of the Cdc14 phosphatase and its regulation. Annu Rev Genet 38: 203–232 doi:10.1146/annurev.genet.38.072902.093051
24. AdamsIR, KilmartinJV (1999) Localization of core spindle pole body (SPB) components during SPB duplication in Saccharomyces cerevisiae. J Cell Biol 145: 809–823.
25. WineyM, GoetschL, BaumP, ByersB (1991) MPS1 and MPS2: novel yeast genes defining distinct steps of spindle pole body duplication. J Cell Biol 114: 745–754.
26. Cohen-FixO, PetersJM, KirschnerMW, KoshlandD (1996) Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. Genes Dev 10: 3081–3093.
27. BremmerSC, HallH, MartinezJS, EisslerCL, HinrichsenTH, et al. (2012) Cdc14 phosphatases preferentially dephosphorylate a subset of cyclin-dependent kinase (Cdk) sites containing phosphoserine. J Biol Chem 287: 1662–1669 doi:10.1074/jbc.M111.281105
28. EisslerCL, MazónG, PowersBL, SavinovSN, SymingtonLS, et al. (2014) The Cdk/Cdc14 Module Controls Activation of the Yen1 Holliday Junction Resolvase to Promote Genome Stability. Mol Cell 54: 80–93 doi:10.1016/j.molcel.2014.02.012
29. LuY, CrossF (2009) Mitotic exit in the absence of separase activity. Mol Biol Cell 20: 1576–1591 doi:10.1091/mbc.E08-10-1042
30. SullivanM, UhlmannF (2003) A non-proteolytic function of separase links the onset of anaphase to mitotic exit. Nat Cell Biol 5: 249–254 doi:10.1038/ncb940
31. ByersB, GoetschL (1974) Duplication of spindle plaques and integration of the yeast cell cycle. Cold Spring Harb Symp Quant Biol 38: 123–131.
32. SchwabM, LutumAS, SeufertW (1997) Yeast Hct1 is a regulator of Clb2 cyclin proteolysis. Cell 90: 683–693.
33. Cohen-FixO, KoshlandD (1999) Pds1p of budding yeast has dual roles: inhibition of anaphase initiation and regulation of mitotic exit. Genes Dev 13: 1950–1959.
34. Tinker-KulbergRL, MorganDO (1999) Pds1 and Esp1 control both anaphase and mitotic exit in normal cells and after DNA damage. Genes Dev 13: 1936–1949.
35. WäschR, CrossFR (2002) APC-dependent proteolysis of the mitotic cyclin Clb2 is essential for mitotic exit. Nature 418: 556–562 doi:10.1038/nature00856
36. FitchI, DahmannC, SuranaU, AmonA, NasmythK, et al. (1992) Characterization of four B-type cyclin genes of the budding yeast Saccharomyces cerevisiae. Mol Biol Cell 3: 805–818.
37. LimHH, GohPY, SuranaU (1996) Spindle pole body separation in Saccharomyces cerevisiae requires dephosphorylation of the tyrosine 19 residue of Cdc28. Mol Cell Biol 16: 6385–6397.
38. AndersonVE, PruddenJ, ProchnikS, GiddingsTHJr, HardwickKG (2007) Novel sfi1 alleles uncover additional functions for Sfi1p in bipolar spindle assembly and function. Mol Biol Cell 18: 2047–2056 doi:10.1091/mbc.E06-10-0918
39. TongAHY, BooneC (2006) Synthetic genetic array analysis in Saccharomyces cerevisiae. Methods Mol Biol 313: 171–192.
40. LongtineMS, McKenzieA3rd, DemariniDJ, ShahNG, WachA, et al. (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14: 953–961.
41. SheffMA, ThornKS (2004) Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21: 661–670 doi:10.1002/yea.1130
42. GiddingsTH, O'TooleET, MorphewM, MastronardeDN, McIntoshJR, et al. (2001) Using rapid freeze and freeze-substitution for the preparation of yeast cells for electron microscopy and three-dimensional analysis. Methods Cell Biol 67: 27–42.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2014 Číslo 10
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- The Master Activator of IncA/C Conjugative Plasmids Stimulates Genomic Islands and Multidrug Resistance Dissemination
- A Splice Mutation in the Gene Causes High Glycogen Content and Low Meat Quality in Pig Skeletal Muscle
- Keratin 76 Is Required for Tight Junction Function and Maintenance of the Skin Barrier
- A Role for Taiman in Insect Metamorphosis