Caudal Regulates the Spatiotemporal Dynamics of Pair-Rule Waves in
One of the most popular problems in development is how the anterior-posterior axis of vertebrates, arthropods and annelids is partitioned into segments. In vertebrates, and recently shown in the beetle Tribolium castaneum, segments are demarcated by means of gene expression waves that propagate from posterior to anterior as the embryo elongates. These waves are assumed to arise due to the regulation of a molecular clock by a frequency gradient. However, to date, neither a candidate nor a functional role has been identified for such a frequency gradient. Here we provide evidence that a static expression gradient of caudal regulates pair-rule oscillations during blastoderm stage in Tribolium. In such a static setup, a frequency gradient is essential to convert clock oscillations into a striped pattern. We further show that a frequency gradient might be essential even in the presence of axis elongation as a buffer against noise. Our work also provides the best evidence to date that Caudal acts as a type of morphogen gradient in the blastoderm of short-germ arthropods; however, Caudal seems to convey positional information through frequency regulation of pair-rule oscillations, rather than through threshold concentration levels in the gradient.
Vyšlo v časopise:
Caudal Regulates the Spatiotemporal Dynamics of Pair-Rule Waves in. PLoS Genet 10(10): e32767. doi:10.1371/journal.pgen.1004677
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004677
Souhrn
One of the most popular problems in development is how the anterior-posterior axis of vertebrates, arthropods and annelids is partitioned into segments. In vertebrates, and recently shown in the beetle Tribolium castaneum, segments are demarcated by means of gene expression waves that propagate from posterior to anterior as the embryo elongates. These waves are assumed to arise due to the regulation of a molecular clock by a frequency gradient. However, to date, neither a candidate nor a functional role has been identified for such a frequency gradient. Here we provide evidence that a static expression gradient of caudal regulates pair-rule oscillations during blastoderm stage in Tribolium. In such a static setup, a frequency gradient is essential to convert clock oscillations into a striped pattern. We further show that a frequency gradient might be essential even in the presence of axis elongation as a buffer against noise. Our work also provides the best evidence to date that Caudal acts as a type of morphogen gradient in the blastoderm of short-germ arthropods; however, Caudal seems to convey positional information through frequency regulation of pair-rule oscillations, rather than through threshold concentration levels in the gradient.
Zdroje
1. RogersKW, SchierAF (2011) Morphogen gradients: From generation to interpretation. Annu Rev Cell Dev Biol 27: 377–407.
2. WolpertL (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25 (1) 1–47.
3. Lawrence PA (1992) The making of a fly: The genetics of animal design. Oxford, UK: Blackwell Scientific.
4. CookeJ, ZeemanEC (1976) A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J Theor Biol 58 (2) 455–476.
5. OatesAC, MorelliLG, AresS (2012) Patterning embryos with oscillations: Structure, function and dynamics of the vertebrate segmentation clock. Development 139 (4) 625–639.
6. DequeantML, GlynnE, GaudenzK, WahlM, ChenJ, et al. (2006) A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science 314 (5805) 1595–1598.
7. PalmeirimI, HenriqueD, Ish-HorowiczD, PourquieO (1997) Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91 (5) 639–648.
8. AulehlaA, WehrleC, Brand-SaberiB, KemlerR, GosslerA, et al. (2003) Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev Cell 4 (3) 395–406.
9. DubrulleJ, McGrewMJ, PourquieO (2001) FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106 (2) 219–232.
10. Diez del CorralR, Olivera-MartinezI, GorielyA, GaleE, MadenM, et al. (2003) Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension. Neuron 40 (1) 65–79.
11. DavisGK, PatelNH (2002) Short, long, and beyond: Molecular and embryological approaches to insect segmentation. Annu Rev Entomol 47: 669–699.
12. SarrazinAF, PeelAD, AverofM (2012) A segmentation clock with two-segment periodicity in insects. Science 336 (6079) 338–341.
13. El-SherifE, AverofM, BrownSJ (2012) A segmentation clock operating in blastoderm and germband stages of Tribolium development. Development 139 (23) 4341–4346.
14. KotkampK, KlinglerM, SchoppmeierM (2010) Apparent role of Tribolium orthodenticle in anteroposterior blastoderm patterning largely reflects novel functions in dorsoventral axis formation and cell survival. Development 137 (11) 1853–1862.
15. SchroderR (2003) The genes orthodenticle and hunchback substitute for bicoid in the beetle Tribolium. Nature 422 (6932) 621–625.
16. PeelAD, ChipmanAD, AkamM (2005) Arthropod segmentation: Beyond the Drosophila paradigm. Nat Rev Genet 6 (12) 905–916.
17. BrownS, FellersJ, ShippyT, DenellR, StauberM, et al. (2001) A strategy for mapping bicoid on the phylogenetic tree. Curr Biol 11 (2) R43–4.
18. LynchJA, BrentAE, LeafDS, PultzMA, DesplanC (2006) Localized maternal orthodenticle patterns anterior and posterior in the long germ wasp Nasonia. Nature 439 (7077) 728–732.
19. Chipman AD (2008) Thoughts and speculations on the ancestral arthropod segmentation pathway. In: Minelli A, Fusco G, editors. Evolving Pathways: Key Themes in Evolutionary Developmental Biology. : Cambridge University Press. pp. 343–358.
20. MacdonaldPM, StruhlG (1986) A molecular gradient in early Drosophila embryos and its role in specifying the body pattern. Nature 324 (6097) 537–545.
21. EdgarLG, CarrS, WangH, WoodWB (2001) Zygotic expression of the caudal homolog pal-1 is required for posterior patterning in Caenorhabditis elegans embryogenesis. Dev Biol 229 (1) 71–88.
22. EpsteinM, PillemerG, YelinR, YisraeliJK, FainsodA (1997) Patterning of the embryo along the anterior-posterior axis: The role of the caudal genes. Development 124 (19) 3805–3814.
23. OlesnickyEC, BrentAE, TonnesL, WalkerM, PultzMA, et al. (2006) A caudal mRNA gradient controls posterior development in the wasp Nasonia. Development 133 (20) 3973–3982.
24. CopfT, SchroderR, AverofM (2004) Ancestral role of caudal genes in axis elongation and segmentation. Proc Natl Acad Sci U S A 101 (51) 17711–17715.
25. ShinmyoY, MitoT, MatsushitaT, SarashinaI, MiyawakiK, et al. (2005) caudal is required for gnathal and thoracic patterning and for posterior elongation in the intermediate-germband cricket Gryllus bimaculatus. Mech Dev 122 (2) 231–239.
26. Murray JD (2002) Mathematical biology: An introduction. : Springer, pp. 418–422.
27. PilonN, OhK, SylvestreJR, SavoryJG, LohnesD (2007) Wnt signaling is a key mediator of Cdx1 expression in vivo. Development 134 (12) 2315–2323.
28. FuJ, PosnienN, BolognesiR, FischerTD, RaylP, et al. (2012) Asymmetrically expressed axin required for anterior development in Tribolium. Proc Natl Acad Sci U S A 109 (20) 7782–7786.
29. McGregorAP, PechmannM, SchwagerEE, FeitosaNM, KruckS, et al. (2008) wnt8 is required for growth-zone establishment and development of opisthosomal segments in a spider. Curr Biol 18 (20) 1619–1623.
30. LoganCY, NusseR (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20: 781–810.
31. BolognesiR, BeermannA, FarzanaL, WittkoppN, LutzR, et al. (2008) Tribolium wnts: Evidence for a larger repertoire in insects with overlapping expression patterns that suggest multiple redundant functions in embryogenesis. Dev Genes Evol 218 (3–4) 193–202.
32. BucherG, FarzanaL, BrownSJ, KlinglerM (2005) Anterior localization of maternal mRNAs in a short germ insect lacking bicoid. Evol Dev 7 (2) 142–149.
33. CavalloRA, CoxRT, MolineMM, RooseJ, PolevoyGA, et al. (1998) Drosophila TCF and Groucho interact to repress Wingless signaling activity. Nature 395 (6702) 604–608.
34. StauberM, JackleH, Schmidt-OttU (1999) The anterior determinant bicoid of Drosophila is a derived Hox class 3 gene. Proc Natl Acad Sci U S A 96 (7) 3786–3789.
35. FalcianiF, HausdorfB, SchroderR, AkamM, TautzD, et al. (1996) Class 3 Hox genes in insects and the origin of zen. Proc Natl Acad Sci U S A 93 (16) 8479–8484.
36. van der ZeeM, BernsN, RothS (2005) Distinct functions of the Tribolium zerknullt genes in serosa specification and dorsal closure. Curr Biol 15 (7) 624–636.
37. MlodzikM, GehringWJ (1987) Expression of the caudal gene in the germ line of Drosophila: Formation of an RNA and protein gradient during early embryogenesis. Cell 48 (3) 465–478.
38. DubnauJ, StruhlG (1996) RNA recognition and translational regulation by a homeodomain protein. Nature 379 (6567) 694–699.
39. SchulzC, TautzD (1995) Zygotic caudal regulation by hunchback and its role in abdominal segment formation of the Drosophila embryo. Development 121 (4) 1023–1028.
40. HaderT, La RoseeA, ZieboldU, BuschM, TaubertH, et al. (1998) Activation of posterior pair-rule stripe expression in response to maternal caudal and zygotic knirps activities. Mech Dev 71 (1–2) 177–186.
41. DearolfCR, TopolJ, ParkerCS (1989) The caudal gene product is a direct activator of fushi tarazu transcription during Drosophila embryogenesis. Nature 341 (6240) 340–343.
42. Rivera-PomarR, LuX, PerrimonN, TaubertH, JackleH (1995) Activation of posterior gap gene expression in the Drosophila blastoderm. Nature 376 (6537) 253–256.
43. MlodzikM, GibsonG, GehringWJ (1990) Effects of ectopic expression of caudal during Drosophila development. Development 109 (2) 271–277.
44. SavoryJG, MansfieldM, RijliFM, LohnesD (2011) Cdx mediates neural tube closure through transcriptional regulation of the planar cell polarity gene Ptk7. Development 138 (7) 1361–1370.
45. GraingerS, LamJ, SavoryJG, MearsAJ, RijliFM, et al. (2012) Cdx regulates Dll1 in multiple lineages. Dev Biol 361 (1) 1–11.
46. SavoryJG, BouchardN, PierreV, RijliFM, De RepentignyY, et al. (2009) Cdx2 regulation of posterior development through non-Hox targets. Development 136 (24) 4099–4110.
47. DeschampsJ, van NesJ (2005) Developmental regulation of the Hox genes during axial morphogenesis in the mouse. Development 132 (13) 2931–2942.
48. GauntSJ, CockleyA, DrageD (2004) Additional enhancer copies, with intact cdx binding sites, anteriorize Hoxa-7/lacZ expression in mouse embryos: Evidence in keeping with an instructional cdx gradient. Int J Dev Biol 48 (7) 613–622.
49. SchyrRB, ShabtaiY, ShashikantCS, FainsodA (2012) Cdx1 is essential for the initiation of HoxC8 expression during early embryogenesis. FASEB J 26 (6) 2674–2684.
50. AulehlaA, WiegraebeW, BaubetV, WahlMB, DengC, et al. (2008) A beta-catenin gradient links the clock and wavefront systems in mouse embryo segmentation. Nat Cell Biol 10 (2) 186–193.
51. AulehlaA, WehrleC, Brand-SaberiB, KemlerR, GosslerA, et al. (2003) Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev Cell 4 (3) 395–406.
52. GibbS, ZagorskaA, MeltonK, TeninG, VaccaI, et al. (2009) Interfering with wnt signaling alters the periodicity of the segmentation clock. Dev Biol 330 (1) 21–31.
53. NaicheLA, HolderN, LewandoskiM (2011) FGF4 and FGF8 comprise the wavefront activity that controls somitogenesis. Proc Natl Acad Sci U S A 108 (10) 4018–4023.
54. SawadaA, ShinyaM, JiangYJ, KawakamiA, KuroiwaA, et al. (2001) Fgf/MAPK signaling is a crucial positional cue in somite boundary formation. Development 128 (23) 4873–4880.
55. CinquinO (2007) Repressor dimerization in the zebrafish somitogenesis clock. PLoS Comput Biol 3 (2) e32.
56. KawamuraA, KoshidaS, HijikataH, SakaguchiT, KondohH, et al. (2005) Zebrafish Hairy/Enhancer of split protein links FGF signaling to cyclic gene expression in the periodic segmentation of somites. Genes Dev 19 (10) 1156–1161.
57. SchroterC, AresS, MorelliLG, IsakovaA, HensK, et al. (2012) Topology and dynamics of the zebrafish segmentation clock core circuit. PLoS Biol 10 (7) e1001364.
58. BeckMT, VaradiZB (1972) One, two and three-dimensional spatially periodic chemical reactions. Nature Physical Science 235: 15–16.
59. ThoenesD (1973) Spatial oscillations in the Zhabotinskii reaction. Nature Physical Science 243: 18–20.
60. LauschkeVM, TsiairisCD, FrancoisP, AulehlaA (2013) Scaling of embryonic patterning based on phase-gradient encoding. Nature 493 (7430) 101–105.
61. Ten TusscherKH (2013) Mechanisms and constraints shaping the evolution of body plan segmentation. Eur Phys J E Soft Matter 36 (5) 54-13054-7
62. MeinhardtH (2008) Models of biological pattern formation: From elementary steps to the organization of embryonic axes. Curr Top Dev Biol 81: 1–63.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2014 Číslo 10
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- The Master Activator of IncA/C Conjugative Plasmids Stimulates Genomic Islands and Multidrug Resistance Dissemination
- A Splice Mutation in the Gene Causes High Glycogen Content and Low Meat Quality in Pig Skeletal Muscle
- Keratin 76 Is Required for Tight Junction Function and Maintenance of the Skin Barrier
- A Role for Taiman in Insect Metamorphosis