#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Gene Duplication Restores the Viability of Δ and Δ Mutants


Both replication polymerases and single-stranded DNA binding proteins (SSB, which associate with single-stranded DNA exposed transiently during replication) are ubiquitous and show high levels of functional and structural conservation across all species. Among the nine different polypeptides that compose the bacterial replicative polymerase, the HolC-HolD (χψ) complex interacts with SSB, and is crucial for normal growth in the model bacteria Escherichia coli. Interestingly, many bacterial species lack this complex, where its function is presumably carried out by other polymerase components. With the aim of better understanding HolC-HolD (χψ) complex function in E. coli, we isolated growth defect suppressor mutations of the holD mutant. We found that ssb gene duplication and the consequent doubling of SSB protein expression, renders the entire χψ complex dispensable for growth. We also show that growth-defect suppression requires the presence of the SSB C-terminal amino acids in both ssb gene copies. This C-terminal tail promotes interaction between SSB and its partner proteins. Thus, our results indicate that in vivo SSB concentration plays a key role in maintaining polymerase stability and replication efficiency, in a reaction that involves SSB interactions with protein partner(s) other than χψ.


Vyšlo v časopise: Gene Duplication Restores the Viability of Δ and Δ Mutants. PLoS Genet 10(10): e32767. doi:10.1371/journal.pgen.1004719
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004719

Souhrn

Both replication polymerases and single-stranded DNA binding proteins (SSB, which associate with single-stranded DNA exposed transiently during replication) are ubiquitous and show high levels of functional and structural conservation across all species. Among the nine different polypeptides that compose the bacterial replicative polymerase, the HolC-HolD (χψ) complex interacts with SSB, and is crucial for normal growth in the model bacteria Escherichia coli. Interestingly, many bacterial species lack this complex, where its function is presumably carried out by other polymerase components. With the aim of better understanding HolC-HolD (χψ) complex function in E. coli, we isolated growth defect suppressor mutations of the holD mutant. We found that ssb gene duplication and the consequent doubling of SSB protein expression, renders the entire χψ complex dispensable for growth. We also show that growth-defect suppression requires the presence of the SSB C-terminal amino acids in both ssb gene copies. This C-terminal tail promotes interaction between SSB and its partner proteins. Thus, our results indicate that in vivo SSB concentration plays a key role in maintaining polymerase stability and replication efficiency, in a reaction that involves SSB interactions with protein partner(s) other than χψ.


Zdroje

1. RobinsonA, CauserRJ, DixonNE (2012) Architecture and conservation of the bacterial DNA replication machinery, an underexploited drug target. Curr Drug Targets 13: 352–372.

2. IndianiC, O'DonnellM (2006) The replication clamp-loading machine at work in the three domains of life. Nat Rev Mol Cell Biol 7: 751–761.

3. LangstonLD, IndianiC, O'DonnellM (2009) Whither the replisome: emerging perspectives on the dynamic nature of the DNA replication machinery. Cell Cycle 8: 2686–2691.

4. McHenryCS (2011) DNA replicases from a bacterial perspective. Annu Rev Biochem 80: 403–436.

5. Reyes-LamotheR, SherrattDJ, LeakeMC (2010) Stoichiometry and architecture of active DNA replication machinery in Escherichia coli. Science 328: 498–501.

6. GeorgescuRE, KurthI, O'DonnellME (2012) Single-molecule studies reveal the function of a third polymerase in the replisome. Nat Struct Mol Biol 19: 113–116.

7. XiaoH, DongZ, O'DonnellM (1993) DNA polymerase III accessory proteins. IV. Characterization of chi and psi. J Biol Chem 268: 11779–11784.

8. SimonettaKR, KazmirskiSL, GoedkenER, CantorAJ, KelchBA, et al. (2009) The mechanism of ATP-dependent primer-template recognition by a clamp loader complex. Cell 137: 659–671.

9. GloverBP, McHenryCS (1998) The chi psi subunits of DNA polymerase III holoenzyme bind to single-stranded DNA-binding protein (SSB) and facilitate replication of an SSB-coated template. Journal of Biological Chemistry 273: 23476–23484.

10. KozlovAG, CoxMM, LohmanTM (2010) Regulation of single-stranded DNA binding by the C termini of Escherichia coli single-stranded DNA-binding (SSB) protein. J Biol Chem 285: 17246–17252.

11. NaueN, FedorovR, PichA, MansteinDJ, CurthU (2010) Site-directed mutagenesis of the chi subunit of DNA polymerase III and single-stranded DNA-binding protein of E. coli reveals key residues for their interaction. Nucleic Acids Res 39: 1398–1407.

12. MarceauAH, BahngS, MassoniSC, GeorgeNP, SandlerSJ, et al. (2011) Structure of the SSB-DNA polymerase III interface and its role in DNA replication. Embo J 30: 4236–4247.

13. GulbisJM, KazmirskiSL, FinkelsteinJ, KelmanZ, O'DonnellM, et al. (2004) Crystal structure of the chi:psi sub-assembly of the Escherichia coli DNA polymerase clamp-loader complex. Eur J Biochem 271: 439–449.

14. BrezellecP, HoebekeM, HietMS, PasekS, FeratJL (2006) DomainSieve: a protein domain-based screen that led to the identification of dam-associated genes with potential link to DNA maintenance. Bioinformatics 22: 1935–1941.

15. JarvisTC, BeaudryAA, BullardJM, OchsnerU, DallmannHG, et al. (2005) Discovery and characterization of the cryptic psi subunit of the pseudomonad DNA replicase. J Biol Chem 280: 40465–40473.

16. OlsonMW, DallmannHG, McHenryCS (1995) DnaX complex of Escherichia coli DNA polymerase III holoenzyme. The chi psi complex functions by increasing the affinity of tau and gamma for delta.delta' to a physiologically relevant range. J Biol Chem 270: 29570–29577.

17. AndersonSG, WilliamsCR, O'DonnellM, BloomLB (2007) A function for the psi subunit in loading the Escherichia coli DNA polymerase sliding clamp. J Biol Chem 282: 7035–7045.

18. KelmanZ, YuzhakovA, AndjelkovicJ, ODonnellM (1998) Devoted to the lagging strand - the chi subunit of DNA polymerase III holoenzyme contacts SSB to promote processive elongation and sliding clamp assembly. EMBO Journal 17: 2436–2449.

19. YuzhakovA, KelmanZ, ODonnellM (1999) Trading places on DNA-a three-point switch underlies primer handoff from primase to the replicative DNA polymerase. Cell 96: 153–163.

20. SavesonCJ, LovettST (1997) Enhanced deletion formation by aberrant DNA replication in Escherichia coli. Genetics 146: 457–470.

21. FloresMJ, BierneH, EhrlichSD, MichelB (2001) Impairment of lagging strand synthesis triggers the formation of a RuvABC substrate at replication forks. Embo J 20: 619–629.

22. BaharogluZ, PetranovicM, FloresMJ, MichelB (2006) RuvAB is essential for replication forks reversal in certain replication mutants. Embo J 25: 596–604.

23. NordmanJ, SkovgaardO, WrightA (2007) A novel class of mutations that affect DNA replication in E. coli. Mol Microbiol 64: 125–138.

24. VigueraE, PetranovicM, ZahradkaD, GermainK, EhrlichDS, et al. (2003) Lethality of bypass polymerases in Escherichia coli cells with a defective clamp loader complex of DNA polymerase III. Mol Microbiol 50: 193–204.

25. CourcelleJ, KhodurskyA, PeterB, BrownPO, HanawaltPC (2001) Comparative gene expression profiles following UV exposure in wild- type and SOS-deficient Escherichia coli. Genetics 158: 41–64.

26. MichelB (2005) After 30 years of study, the bacterial SOS response still surprises us. PLoS Biol 3: e255.

27. MoreauPL (1988) Overproduction of single-stranded-DNA-binding protein specifically inhibits recombination of UV-irradiated bacteriophage DNA in Escherichia coli. J Bacteriol 170: 2493–2500.

28. KimSR, MatsuiK, YamadaM, GruzP, NohmiT (2001) Roles of chromosomal and episomal dinB genes encoding DNA pol IV in targeted and untargeted mutagenesis in Escherichia coli. Mol Genet Genomics 266: 207–215.

29. HeltzelJM, MaulRW, WolffDW, SuttonMD (2012) Escherichia coli DNA polymerase IV (Pol IV), but not Pol II, dynamically switches with a stalled Pol III* replicase. J Bacteriol 194: 3589–3600.

30. IndianiC, LangstonLD, YurievaO, GoodmanMF, O'DonnellM (2009) Translesion DNA polymerases remodel the replisome and alter the speed of the replicative helicase. Proc Natl Acad Sci U S A 106: 6031–6038.

31. IkedaM, ShinozakiY, UchidaK, OhshikaY, FurukohriA, et al. (2012) Quick replication fork stop by overproduction of Escherichia coli DinB produces non-proliferative cells with an aberrant chromosome. Genes Genet Syst 87: 221–231.

32. Lenne-SamuelN, WagnerJ, EtienneH, FuchsRP (2002) The processivity factor beta controls DNA polymerase IV traffic during spontaneous mutagenesis and translesion synthesis in vivo. EMBO Rep 3: 45–49.

33. SheredaRD, KozlovAG, LohmanTM, CoxMM, KeckJL (2008) SSB as an organizer/mobilizer of genome maintenance complexes. Crit Rev Biochem Mol Biol 43: 289–318.

34. CostesA, LecointeF, McGovernS, Quevillon-CheruelS, PolardP (2010) The C-terminal domain of the bacterial SSB protein acts as a DNA maintenance hub at active chromosome replication forks. PLoS Genet 6: e1001238.

35. LohmanTM, FerrariME (1994) Escherichia coli single-stranded DNA-binding protein: Multiple DNA-binding modes and cooperativities. Annual Review of Biochemistry 63: 527–570.

36. RoyR, KozlovAG, LohmanTM, HaT (2007) Dynamic structural rearrangements between DNA binding modes of E. coli SSB protein. J Mol Biol 369: 1244–1257.

37. ZhouR, KozlovAG, RoyR, ZhangJ, KorolevS, et al. (2011) SSB Functions as a Sliding Platform that Migrates on DNA via Reptation. Cell 146: 222–232.

38. WesselSR, MarceauAH, MassoniSC, ZhouR, HaT, et al. (2013) PriC-mediated DNA replication restart requires PriC complex formation with the single-stranded DNA-binding protein. J Biol Chem 288: 17569–17578.

39. AntonyE, WeilandE, YuanQ, ManhartCM, NguyenB, et al. (2013) Multiple C-terminal tails within a single E. coli SSB homotetramer coordinate DNA replication and repair. J Mol Biol 425: 4802–4819.

40. SuXC, WangY, YagiH, ShishmarevD, MasonCE, et al. (2014) Bound or free: interaction of the C-terminal domain of Escherichia coli single-stranded DNA-binding protein (SSB) with the tetrameric core of SSB. Biochemistry 53: 1925–1934.

41. ButlandG, Peregrin-AlvarezJM, LiJ, YangW, YangX, et al. (2005) Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433: 531–537.

42. NaueN, BeerbaumM, BogutzkiA, SchmiederP, CurthU (2013) The helicase-binding domain of Escherichia coli DnaG primase interacts with the highly conserved C-terminal region of single-stranded DNA-binding protein. Nucleic Acids Res 41: 4507–4517.

43. DowneyCD, McHenryCS (2010) Chaperoning of a replicative polymerase onto a newly assembled DNA-bound sliding clamp by the clamp loader. Mol Cell 37: 481–491.

44. DatsenkoKA, WannerBL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97: 6640–6645.

45. YuD, EllisHM, LeeEC, JenkinsNA, CopelandNG, et al. (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A 97: 5978–5983.

46. Miller JH (1992) A short course in bacterial genetic: Cold Spring Harbor, New York Cold Spring Harbor Press.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#