#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Mutations in Moderate or Severe Intellectual Disability


Intellectual disability (ID) is the most frequent severe handicap of childhood. Several observations indicate that genetic factors explain a large fraction of cases with ID. We and others have recently found that de novo mutations (DNMs; genetic changes not transmitted from the parents) represent a common cause of ID. To further assess the contribution of DNMs to the development of ID, we interrogated virtually all the genes of the genome in 41 affected children with moderate or severe ID and in their healthy parents. In 12 of the cases, we identified disease-causing DNMs in genes known to be associated with ID, resulting in a molecular diagnostic yield of 29%. We also found 12 possibly disease-causing DNMs in genes that were not previously causally linked to ID. Interestingly, many of the genes with deleterious DNMs uncovered by this study encode proteins that interact with each other and affect specific processes in brain cells. In contrast, we did not identify any inherited mutations that could explain our cases. We conclude that DNMs play a predominant role in moderate or severe ID.


Vyšlo v časopise: Mutations in Moderate or Severe Intellectual Disability. PLoS Genet 10(10): e32767. doi:10.1371/journal.pgen.1004772
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004772

Souhrn

Intellectual disability (ID) is the most frequent severe handicap of childhood. Several observations indicate that genetic factors explain a large fraction of cases with ID. We and others have recently found that de novo mutations (DNMs; genetic changes not transmitted from the parents) represent a common cause of ID. To further assess the contribution of DNMs to the development of ID, we interrogated virtually all the genes of the genome in 41 affected children with moderate or severe ID and in their healthy parents. In 12 of the cases, we identified disease-causing DNMs in genes known to be associated with ID, resulting in a molecular diagnostic yield of 29%. We also found 12 possibly disease-causing DNMs in genes that were not previously causally linked to ID. Interestingly, many of the genes with deleterious DNMs uncovered by this study encode proteins that interact with each other and affect specific processes in brain cells. In contrast, we did not identify any inherited mutations that could explain our cases. We conclude that DNMs play a predominant role in moderate or severe ID.


Zdroje

1. RopersHH (2010) Genetics of early onset cognitive impairment. Annu Rev Genomics Hum Genet 11: 161–187.

2. de LigtJ, WillemsenMH, van BonBW, KleefstraT, YntemaHG, et al. (2012) Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med 367: 1921–1929.

3. HamdanFF, GauthierJ, ArakiY, LinDT, YoshizawaY, et al. (2011) Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability. Am J Hum Genet 88: 306–316.

4. RauchA, WieczorekD, GrafE, WielandT, EndeleS, et al. (2012) Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 380: 1674–1682.

5. VissersLE, de LigtJ, GilissenC, JanssenI, SteehouwerM, et al. (2010) A de novo paradigm for mental retardation. Nat Genet 42: 1109–1112.

6. Epi4K Consortium (2013) Epilepsy Phenome/GenomeP, AllenAS, BerkovicSF, CossetteP, et al. (2013) De novo mutations in epileptic encephalopathies. Nature 501: 217–221.

7. IossifovI, RonemusM, LevyD, WangZ, HakkerI, et al. (2012) De novo gene disruptions in children on the autistic spectrum. Neuron 74: 285–299.

8. NealeBM, KouY, LiuL, Ma'ayanA, SamochaKE, et al. (2012) Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485: 242–245.

9. O'RoakBJ, VivesL, GirirajanS, KarakocE, KrummN, et al. (2012) Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485: 246–250.

10. SandersSJ, MurthaMT, GuptaAR, MurdochJD, RaubesonMJ, et al. (2012) De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485: 237–241.

11. XuB, Ionita-LazaI, RoosJL, BooneB, WoodrickS, et al. (2012) De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nat Genet 44: 1365–1369.

12. HoyerJ, EkiciAB, EndeleS, PoppB, ZweierC, et al. (2012) Haploinsufficiency of ARID1B, a member of the SWI/SNF-a chromatin-remodeling complex, is a frequent cause of intellectual disability. Am J Hum Genet 90: 565–572.

13. CarvillGL, HeavinSB, YendleSC, McMahonJM, O'RoakBJ, et al. (2013) Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet 45: 825–830.

14. KortumF, DasS, FlindtM, Morris-RosendahlDJ, StefanovaI, et al. (2011) The core FOXG1 syndrome phenotype consists of postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and corpus callosum hypogenesis. J Med Genet 48: 396–406.

15. WillemsenMH, NijhofB, FenckovaM, NillesenWM, BongersEM, et al. (2013) GATAD2B loss-of-function mutations cause a recognisable syndrome with intellectual disability and are associated with learning deficits and synaptic undergrowth in Drosophila. J Med Genet 50: 507–514.

16. BonnetC, Ali KhanA, BressoE, VigourouxC, BeriM, et al. (2013) Extended spectrum of MBD5 mutations in neurodevelopmental disorders. Eur J Hum Genet 21: 1457–1461.

17. TalkowskiME, MullegamaSV, RosenfeldJA, van BonBW, ShenY, et al. (2011) Assessment of 2q23.1 microdeletion syndrome implicates MBD5 as a single causal locus of intellectual disability, epilepsy, and autism spectrum disorder. Am J Hum Genet 89: 551–563.

18. KleefstraT, KramerJM, NevelingK, WillemsenMH, KoemansTS, et al. (2012) Disruption of an EHMT1-associated chromatin-modification module causes intellectual disability. Am J Hum Genet 91: 73–82.

19. AsadollahiR, OnedaB, ShethF, Azzarello-BurriS, BaldingerR, et al. (2013) Dosage changes of MED13L further delineate its role in congenital heart defects and intellectual disability. Eur J Hum Genet 21: 1100–1104.

20. van HaelstMM, MonroeGR, DuranK, van BinsbergenE, BreurJM, et al. (2014) Further confirmation of the MED13L haploinsufficiency syndrome. Eur J Hum Genet

21. GilissenC, Hehir-KwaJY, ThungDT, van de VorstM, van BonBW, et al. (2014) Genome sequencing identifies major causes of severe intellectual disability. Nature 511: 344–347.

22. HoischenA, van BonBW, GilissenC, ArtsP, van LierB, et al. (2010) De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat Genet 42: 483–485.

23. HamdanFF, DaoudH, PatryL, Dionne-LaporteA, SpiegelmanD, et al. (2013) Parent-child exome sequencing identifies a de novo truncating mutation in TCF4 in non-syndromic intellectual disability. Clin Genet 83: 198–200.

24. NeedAC, ShashiV, HitomiY, SchochK, ShiannaKV, et al. (2012) Clinical application of exome sequencing in undiagnosed genetic conditions. J Med Genet 49: 353–361.

25. ZweierC, PeippoMM, HoyerJ, SousaS, BottaniA, et al. (2007) Haploinsufficiency of TCF4 causes syndromal mental retardation with intermittent hyperventilation (Pitt-Hopkins syndrome). Am J Hum Genet 80: 994–1001.

26. HaackTB, HogarthP, KruerMC, GregoryA, WielandT, et al. (2012) Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA. Am J Hum Genet 91: 1144–1149.

27. SaitsuH, NishimuraT, MuramatsuK, KoderaH, KumadaS, et al. (2013) De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat Genet 45: 445–449, 449e441.

28. FilgesI, ShimojimaK, OkamotoN, RothlisbergerB, WeberP, et al. (2011) Reduced expression by SETBP1 haploinsufficiency causes developmental and expressive language delay indicating a phenotype distinct from Schinzel-Giedion syndrome. J Med Genet 48: 117–122.

29. O'RoakBJ, VivesL, FuW, EgertsonJD, StanawayIB, et al. (2012) Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 338: 1619–1622.

30. PalumboO, FicheraM, PalumboP, RizzoR, MazzollaE, et al. (2014) TBR1 is the candidate gene for intellectual disability in patients with a 2q24.2 interstitial deletion. Am J Med Genet A 164(A): 828–833.

31. EndeleS, RosenbergerG, GeiderK, PoppB, TamerC, et al. (2010) Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat Genet 42: 1021–1026.

32. LemkeJR, HendrickxR, GeiderK, LaubeB, SchwakeM, et al. (2014) GRIN2B mutations in West syndrome and intellectual disability with focal epilepsy. Ann Neurol 75: 147–154.

33. BallifBC, RosenfeldJA, TraylorR, TheisenA, BaderPI, et al. (2012) High-resolution array CGH defines critical regions and candidate genes for microcephaly, abnormalities of the corpus callosum, and seizure phenotypes in patients with microdeletions of 1q43q44. Hum Genet 131: 145–156.

34. ThierryG, BeneteauC, PichonO, FloriE, IsidorB, et al. (2012) Molecular characterization of 1q44 microdeletion in 11 patients reveals three candidate genes for intellectual disability and seizures. Am J Med Genet A 158A: 1633–1640.

35. IskenO, MaquatLE (2007) Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev 21: 1833–1856.

36. ZhangF, YuX (2011) WAC, a functional partner of RNF20/40, regulates histone H2B ubiquitination and gene transcription. Mol Cell 41: 384–397.

37. WentzelC, Rajcan-SeparovicE, RuivenkampCA, Chantot-BastaraudS, MetayC, et al. (2011) Genomic and clinical characteristics of six patients with partially overlapping interstitial deletions at 10p12p11. Eur J Hum Genet 19: 959–964.

38. VenetucciL, DenegriM, NapolitanoC, PrioriSG (2012) Inherited calcium channelopathies in the pathophysiology of arrhythmias. Nat Rev Cardiol 9: 561–575.

39. Van PetegemF (2012) Ryanodine receptors: structure and function. J Biol Chem 287: 31624–31632.

40. LaPageMJ, RussellMW, BradleyDJ, DickM2nd (2012) Novel ryanodine receptor 2 mutation associated with a severe phenotype of catecholaminergic polymorphic ventricular tachycardia. J Pediatr 161: 362–364.

41. JohnsonJN, TesterDJ, BassNE, AckermanMJ (2010) Cardiac channel molecular autopsy for sudden unexpected death in epilepsy. J Child Neurol 25: 916–921.

42. LehnartSE, MongilloM, BellingerA, LindeggerN, ChenBX, et al. (2008) Leaky Ca2+ release channel/ryanodine receptor 2 causes seizures and sudden cardiac death in mice. J Clin Invest 118: 2230–2245.

43. TakanoK, LiuD, TarpeyP, GallantE, LamA, et al. (2012) An X-linked channelopathy with cardiomegaly due to a CLIC2 mutation enhancing ryanodine receptor channel activity. Hum Mol Genet 21: 4497–4507.

44. MaX, BaoJ, AdelsteinRS (2007) Loss of cell adhesion causes hydrocephalus in nonmuscle myosin II-B-ablated and mutated mice. Mol Biol Cell 18: 2305–2312.

45. MaX, KawamotoS, HaraY, AdelsteinRS (2004) A point mutation in the motor domain of nonmuscle myosin II-B impairs migration of distinct groups of neurons. Mol Biol Cell 15: 2568–2579.

46. TuzovicL, YuL, ZengW, LiX, LuH, et al. (2013) A human de novo mutation in MYH10 phenocopies the loss of function mutation in mice. Rare Dis 1: e26144.

47. MutoS, SendaM, AkaiY, SatoL, SuzukiT, et al. (2007) Relationship between the structure of SET/TAF-Ibeta/INHAT and its histone chaperone activity. Proc Natl Acad Sci U S A 104: 4285–4290.

48. MinakuchiM, KakazuN, Gorrin-RivasMJ, AbeT, CopelandTD, et al. (2001) Identification and characterization of SEB, a novel protein that binds to the acute undifferentiated leukemia-associated protein SET. Eur J Biochem 268: 1340–1351.

49. LeungJW, LeitchA, WoodJL, Shaw-SmithC, MetcalfeK, et al. (2011) SET nuclear oncogene associates with microcephalin/MCPH1 and regulates chromosome condensation. J Biol Chem 286: 21393–21400.

50. JacksonAP, EastwoodH, BellSM, AduJ, ToomesC, et al. (2002) Identification of microcephalin, a protein implicated in determining the size of the human brain. Am J Hum Genet 71: 136–142.

51. PoirierR, ChevalH, MailhesC, GarelS, CharnayP, et al. (2008) Distinct functions of egr gene family members in cognitive processes. Front Neurosci 2: 47–55.

52. BozonB, DavisS, LarocheS (2002) Regulated transcription of the immediate-early gene Zif268: mechanisms and gene dosage-dependent function in synaptic plasticity and memory formation. Hippocampus 12: 570–577.

53. JonesMW, ErringtonML, FrenchPJ, FineA, BlissTV, et al. (2001) A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nat Neurosci 4: 289–296.

54. DickeyAS, StrackS (2011) PKA/AKAP1 and PP2A/Bbeta2 regulate neuronal morphogenesis via Drp1 phosphorylation and mitochondrial bioenergetics. J Neurosci 31: 15716–15726.

55. MuntonRP, ViziS, MansuyIM (2004) The role of protein phosphatase-1 in the modulation of synaptic and structural plasticity. FEBS Lett 567: 121–128.

56. Stuchell-BreretonMD, SkalickyJJ, KiefferC, KarrenMA, GhaffarianS, et al. (2007) ESCRT-III recognition by VPS4 ATPases. Nature 449: 740–744.

57. McCulloughJ, ColfLA, SundquistWI (2013) Membrane fission reactions of the mammalian ESCRT pathway. Annu Rev Biochem 82: 663–692.

58. MoritaE, ColfLA, KarrenMA, SandrinV, RodeschCK, et al. (2010) Human ESCRT-III and VPS4 proteins are required for centrosome and spindle maintenance. Proc Natl Acad Sci U S A 107: 12889–12894.

59. ZuberiK, FranzM, RodriguezH, MontojoJ, LopesCT, et al. (2013) GeneMANIA prediction server 2013 update. Nucleic Acids Res 41: W115–122.

60. FroyenG, CorbettM, VandewalleJ, JarvelaI, LawrenceO, et al. (2008) Submicroscopic duplications of the hydroxysteroid dehydrogenase HSD17B10 and the E3 ubiquitin ligase HUWE1 are associated with mental retardation. Am J Hum Genet 82: 432–443.

61. WangK, LiM, HakonarsonH (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38: e164.

62. RobinsonJT, ThorvaldsdottirH, WincklerW, GuttmanM, LanderES, et al. (2011) Integrative genomics viewer. Nat Biotechnol 29: 24–26.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#