#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Genome-Wide Mapping of Yeast RNA Polymerase II Termination


Transcription termination is an important regulatory event for both non-coding and coding transcripts. Using high-throughput sequencing, we have mapped RNA Polymerase II's position in the genome after depletion of termination factors from the nucleus. We found that depletion of Ysh1 and Sen1 cause build up of polymerase directly downstream of coding and non-coding genes, respectively. Depletion of Nrd1 causes an increase in polymerase that is distributed up to 1,000 bases downstream of non-coding genes. The depletion of Nrd1 helped us to identify more than 250 unique termination regions for non-coding RNAs. Within this set of newly identified non-coding termination regions, we are further able to classify them based on sequence motif similarities, suggesting a functional role for different terminator motifs. The role of these factors in transcriptional termination of coding and/or non-coding transcripts can be inferred from the effect of polymerase's position downstream of given termination sites. This method of depletion and sequencing can be used to further elucidate other factors whose importance to transcription has yet to be determined.


Vyšlo v časopise: Genome-Wide Mapping of Yeast RNA Polymerase II Termination. PLoS Genet 10(10): e32767. doi:10.1371/journal.pgen.1004632
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004632

Souhrn

Transcription termination is an important regulatory event for both non-coding and coding transcripts. Using high-throughput sequencing, we have mapped RNA Polymerase II's position in the genome after depletion of termination factors from the nucleus. We found that depletion of Ysh1 and Sen1 cause build up of polymerase directly downstream of coding and non-coding genes, respectively. Depletion of Nrd1 causes an increase in polymerase that is distributed up to 1,000 bases downstream of non-coding genes. The depletion of Nrd1 helped us to identify more than 250 unique termination regions for non-coding RNAs. Within this set of newly identified non-coding termination regions, we are further able to classify them based on sequence motif similarities, suggesting a functional role for different terminator motifs. The role of these factors in transcriptional termination of coding and/or non-coding transcripts can be inferred from the effect of polymerase's position downstream of given termination sites. This method of depletion and sequencing can be used to further elucidate other factors whose importance to transcription has yet to be determined.


Zdroje

1. KuehnerJN, PearsonEL, MooreC (2011) Unravelling the means to an end: RNA polymerase II transcription termination. Nat Rev Mol Cell Biol 12: 283–294.

2. MischoHE, ProudfootNJ (2013) Disengaging polymerase: terminating RNA polymerase II transcription in budding yeast. Biochim Biophys Acta 1829: 174–185.

3. CloutierSC, WangS, MaWK, PetellCJ, TranEJ (2013) Long noncoding RNAs promote transcriptional poising of inducible genes. PLoS Biol 11: e1001715.

4. CastelnuovoM, RahmanS, GuffantiE, InfantinoV, StutzF, et al. (2013) Bimodal expression of PHO84 is modulated by early termination of antisense transcription. Nat Struct Mol Biol 20: 851–858.

5. ShearwinKE, CallenBP, EganJB (2005) Transcriptional interference–a crash course. Trends Genet 21: 339–345.

6. ArigoJT, CarrollKL, AmesJM, CordenJL (2006) Regulation of yeast NRD1 expression by premature transcription termination. Mol Cell 21: 641–651.

7. KuehnerJN, BrowDA (2008) Regulation of a eukaryotic gene by GTP-dependent start site selection and transcription attenuation. Mol Cell 31: 201–211.

8. CreamerTJ, DarbyMM, JamonnakN, SchaughencyP, HaoH, et al. (2011) Transcriptome-wide binding sites for components of the Saccharomyces cerevisiae non-poly(A) termination pathway: Nrd1, Nab3, and Sen1. PLoS Genet 7: e1002329.

9. ThiebautM, ColinJ, NeilH, JacquierA, SeraphinB, et al. (2008) Futile cycle of transcription initiation and termination modulates the response to nucleotide shortage in S. cerevisiae. Mol Cell 31: 671–682.

10. Tan-WongSM, ZauggJB, CamblongJ, XuZ, ZhangDW, et al. (2012) Gene loops enhance transcriptional directionality. Science 338: 671–675.

11. GrzechnikP, Tan-WongSM, ProudfootNJ (2014) Terminate and make a loop: regulation of transcriptional directionality. Trends Biochem Sci 39: 319–27.

12. JacquierA (2009) The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat Rev Genet 10: 833–844.

13. JensenTH, JacquierA, LibriD (2013) Dealing with pervasive transcription. Mol Cell 52: 473–484.

14. BerrettaJ, MorillonA (2009) Pervasive transcription constitutes a new level of eukaryotic genome regulation. EMBO Rep 10: 973–982.

15. ArigoJT, EylerDE, CarrollKL, CordenJL (2006) Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. Mol Cell 23: 841–851.

16. DavisCA, AresMJr (2006) Accumulation of unstable promoter-associated transcripts upon loss of the nuclear exosome subunit Rrp6p in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 103: 3262–3267.

17. GudipatiRK, XuZ, LebretonA, SeraphinB, SteinmetzLM, et al. (2012) Extensive degradation of RNA precursors by the exosome in wild-type cells. Mol Cell 48: 409–421.

18. NeilH, MalabatC, d'Aubenton-CarafaY, XuZ, SteinmetzLM, et al. (2009) Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 457: 1038–1042.

19. ThiebautM, Kisseleva-RomanovaE, RougemailleM, BoulayJ, LibriD (2006) Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the nrd1-nab3 pathway in genome surveillance. Mol Cell 23: 853–864.

20. WyersF, RougemailleM, BadisG, RousselleJC, DufourME, et al. (2005) Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121: 725–737.

21. XuZ, WeiW, GagneurJ, PerocchiF, Clauder-MunsterS, et al. (2009) Bidirectional promoters generate pervasive transcription in yeast. Nature 457: 1033–1037.

22. BuratowskiS (2005) Connections between mRNA 3′ end processing and transcription termination. Curr Opin Cell Biol 17: 257–261.

23. HsinJP, ManleyJL (2012) The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 26: 2119–2137.

24. KimM, VasiljevaL, RandoOJ, ZhelkovskyA, MooreC, et al. (2006) Distinct pathways for snoRNA and mRNA termination. Mol Cell 24: 723–734.

25. UrsicD, ChinchillaK, FinkelJS, CulbertsonMR (2004) Multiple protein/protein and protein/RNA interactions suggest roles for yeast DNA/RNA helicase Sen1p in transcription, transcription-coupled DNA repair and RNA processing. Nucleic Acids Res 32: 2441–2452.

26. SteinmetzEJ, BrowDA (1996) Repression of gene expression by an exogenous sequence element acting in concert with a heterogeneous nuclear ribonucleoprotein-like protein, Nrd1, and the putative helicase Sen1. Mol Cell Biol 16: 6993–7003.

27. SteinmetzEJ, BrowDA (1998) Control of pre-mRNA accumulation by the essential yeast protein Nrd1 requires high-affinity transcript binding and a domain implicated in RNA polymerase II association. Proc Natl Acad Sci U S A 95: 6699–6704.

28. SteinmetzEJ, ConradNK, BrowDA, CordenJL (2001) RNA-binding protein Nrd1 directs poly(A)-independent 3′-end formation of RNA polymerase II transcripts. Nature 413: 327–331.

29. ConradNK, WilsonSM, SteinmetzEJ, PatturajanM, BrowDA, et al. (2000) A yeast heterogeneous nuclear ribonucleoprotein complex associated with RNA polymerase II. Genetics 154: 557–571.

30. SteinmetzEJ, NgSB, ClouteJP, BrowDA (2006) cis- and trans-Acting determinants of transcription termination by yeast RNA polymerase II. Mol Cell Biol 26: 2688–2696.

31. CarrollKL, GhirlandoR, AmesJM, CordenJL (2007) Interaction of yeast RNA-binding proteins Nrd1 and Nab3 with RNA polymerase II terminator elements. RNA 13: 361–373.

32. CarrollKL, PradhanDA, GranekJA, ClarkeND, CordenJL (2004) Identification of cis elements directing termination of yeast nonpolyadenylated snoRNA transcripts. Mol Cell Biol 24: 6241–6252.

33. PorruaO, HoborF, BoulayJ, KubicekK, D'Aubenton-CarafaY, et al. (2012) In vivo SELEX reveals novel sequence and structural determinants of Nrd1-Nab3-Sen1-dependent transcription termination. EMBO J 31: 3935–3948.

34. WlotzkaW, KudlaG, GrannemanS, TollerveyD (2011) The nuclear RNA polymerase II surveillance system targets polymerase III transcripts. EMBO J 30: 1790–1803.

35. VasiljevaL, BuratowskiS (2006) Nrd1 interacts with the nuclear exosome for 3′ processing of RNA polymerase II transcripts. Mol Cell 21: 239–248.

36. KimM, KroganNJ, VasiljevaL, RandoOJ, NedeaE, et al. (2004) The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 432: 517–522.

37. WestS, GromakN, ProudfootNJ (2004) Human 5′→3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature 432: 522–525.

38. BrannanK, BentleyDL (2012) Control of Transcriptional Elongation by RNA Polymerase II: A Retrospective. Genet Res Int 2012: 170173.

39. LoganJ, Falck-PedersenE, DarnellJEJr, ShenkT (1987) A poly(A) addition site and a downstream termination region are required for efficient cessation of transcription by RNA polymerase II in the mouse beta maj-globin gene. Proc Natl Acad Sci U S A 84: 8306–8310.

40. ZhangZ, GilmourDS (2006) Pcf11 is a termination factor in Drosophila that dismantles the elongation complex by bridging the CTD of RNA polymerase II to the nascent transcript. Mol Cell 21: 65–74.

41. ZhangZ, KlattA, HendersonAJ, GilmourDS (2007) Transcription termination factor Pcf11 limits the processivity of Pol II on an HIV provirus to repress gene expression. Genes Dev 21: 1609–1614.

42. ChinchillaK, Rodriguez-MolinaJB, UrsicD, FinkelJS, AnsariAZ, et al. (2012) Interactions of Sen1, Nrd1, and Nab3 with multiple phosphorylated forms of the Rpb1 C-terminal domain in Saccharomyces cerevisiae. Eukaryot Cell 11: 417–429.

43. KimHD, ChoeJ, SeoYS (1999) The sen1(+) gene of Schizosaccharomyces pombe, a homologue of budding yeast SEN1, encodes an RNA and DNA helicase. Biochemistry 38: 14697–14710.

44. BrowDA (2011) Sen-sing RNA terminators. Mol Cell 42: 717–718.

45. SteinmetzEJ, WarrenCL, KuehnerJN, PanbehiB, AnsariAZ, et al. (2006) Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. Mol Cell 24: 735–746.

46. PorruaO, LibriD (2013) A bacterial-like mechanism for transcription termination by the Sen1p helicase in budding yeast. Nat Struct Mol Biol 20: 884–891.

47. HafnerM, LandthalerM, BurgerL, KhorshidM, HausserJ, et al. (2010) PAR-CliP–a method to identify transcriptome-wide the binding sites of RNA binding proteins. J Vis Exp

48. HafnerM, LandthalerM, BurgerL, KhorshidM, HausserJ, et al. (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141: 129–141.

49. JamonnakN, CreamerTJ, DarbyMM, SchaughencyP, WheelanSJ, et al. (2011) Yeast Nrd1, Nab3, and Sen1 transcriptome-wide binding maps suggest multiple roles in post-transcriptional RNA processing. RNA 17: 2011–2025.

50. HarukiH, NishikawaJ, LaemmliUK (2008) The anchor-away technique: rapid, conditional establishment of yeast mutant phenotypes. Mol Cell 31: 925–932.

51. FanX, MoqtaderiZ, JinY, ZhangY, LiuXS, et al. (2010) Nucleosome depletion at yeast terminators is not intrinsic and can occur by a transcriptional mechanism linked to 3′-end formation. Proc Natl Acad Sci U S A 107: 17945–17950.

52. BurgerK, MuhlB, KellnerM, RohrmoserM, Gruber-EberA, et al. (2013) 4-thiouridine inhibits rRNA synthesis and causes a nucleolar stress response. RNA Biol 10.

53. ChurchmanLS, WeissmanJS (2011) Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469: 368–373.

54. PelechanoV, ChavezS, Perez-OrtinJE (2010) A complete set of nascent transcription rates for yeast genes. PLoS One 5: e15442.

55. ZhelkovskyA, TacahashiY, NasserT, HeX, SterzerU, et al. (2006) The role of the Brr5/Ysh1 C-terminal domain and its homolog Syc1 in mRNA 3′-end processing in Saccharomyces cerevisiae. RNA 12: 435–445.

56. BrendoliseC, RouillardJM, DufourME, LacrouteF (2002) Expression analysis of RNA14, a gene involved in mRNA 3′ end maturation in yeast: characterization of the rna14-5 mutant strain. Mol Genet Genomics 267: 515–525.

57. MandartE (1998) Effects of mutations in the Saccharomyces cerevisiae RNA14 gene on the abundance and polyadenylation of its transcripts. Mol Gen Genet 258: 16–25.

58. CloutierSC, MaWK, NguyenLT, TranEJ (2012) The DEAD-box RNA helicase Dbp2 connects RNA quality control with repression of aberrant transcription. J Biol Chem 287: 26155–26166.

59. MaWK, CloutierSC, TranEJ (2013) The DEAD-box protein Dbp2 functions with the RNA-binding protein Yra1 to promote mRNP assembly. J Mol Biol 425: 3824–3838.

60. BartaI, IggoR (1995) Autoregulation of expression of the yeast Dbp2p ‘DEAD-box’ protein is mediated by sequences in the conserved DBP2 intron. EMBO J 14: 3800–3808.

61. OzsolakF, KapranovP, FoissacS, KimSW, FishilevichE, et al. (2010) Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell 143: 1018–1029.

62. WilkeningS, PelechanoV, JarvelinAI, TekkedilMM, AndersS, et al. (2013) An efficient method for genome-wide polyadenylation site mapping and RNA quantification. Nucleic Acids Res 41: e65.

63. MoqtaderiZ, GeisbergJV, JinY, FanX, StruhlK (2013) Species-specific factors mediate extensive heterogeneity of mRNA 3′ ends in yeasts. Proc Natl Acad Sci U S A 110: 11073–11078.

64. VasiljevaL, KimM, MutschlerH, BuratowskiS, MeinhartA (2008) The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain. Nat Struct Mol Biol 15: 795–804.

65. SchulzD, SchwalbB, KieselA, BaejenC, TorklerP, et al. (2013) Transcriptome Surveillance by Selective Termination of Noncoding RNA Synthesis. Cell

66. RahlPB, LinCY, SeilaAC, FlynnRA, McCuineS, et al. (2010) c-Myc regulates transcriptional pause release. Cell 141: 432–445.

67. GromakN, WestS, ProudfootNJ (2006) Pause sites promote transcriptional termination of mammalian RNA polymerase II. Mol Cell Biol 26: 3986–3996.

68. HymanLE, MooreCL (1993) Termination and pausing of RNA polymerase II downstream of yeast polyadenylation sites. Mol Cell Biol 13: 5159–5167.

69. KazerouniniaA, NgoB, MartinsonHG (2010) Poly(A) signal-dependent degradation of unprocessed nascent transcripts accompanies poly(A) signal-dependent transcriptional pausing in vitro. RNA 16: 197–210.

70. LarsonDR, ZenklusenD, WuB, ChaoJA, SingerRH (2011) Real-time observation of transcription initiation and elongation on an endogenous yeast gene. Science 332: 475–478.

71. BaileyTL, BodenM, BuskeFA, FrithM, GrantCE, et al. (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37: W202–208.

72. BacikovaV, PasulkaJ, KubicekK, SteflR (2014) Structure and semi-sequence-specific RNA binding of Nrd1. Nucleic Acids Res 42: 8024–38.

73. BirseCE, Minvielle-SebastiaL, LeeBA, KellerW, ProudfootNJ (1998) Coupling termination of transcription to messenger RNA maturation in yeast. Science 280: 298–301.

74. LuoW, BentleyD (2004) A ribonucleolytic rat torpedoes RNA polymerase II. Cell 119: 911–914.

75. CalvoO, ManleyJL (2001) Evolutionarily conserved interaction between CstF-64 and PC4 links transcription, polyadenylation, and termination. Mol Cell 7: 1013–1023.

76. NagA, NarsinhK, KazerouniniaA, MartinsonHG (2006) The conserved AAUAAA hexamer of the poly(A) signal can act alone to trigger a stable decrease in RNA polymerase II transcription velocity. RNA 12: 1534–1544.

77. ConnellyS, ManleyJL (1988) A functional mRNA polyadenylation signal is required for transcription termination by RNA polymerase II. Genes Dev 2: 440–452.

78. LuoW, JohnsonAW, BentleyDL (2006) The role of Rat1 in coupling mRNA 3′-end processing to transcription termination: implications for a unified allosteric-torpedo model. Genes Dev 20: 954–965.

79. NagA, NarsinhK, MartinsonHG (2007) The poly(A)-dependent transcriptional pause is mediated by CPSF acting on the body of the polymerase. Nat Struct Mol Biol 14: 662–669.

80. PearsonEL, MooreCL (2013) Dismantling promoter-driven RNA polymerase II transcription complexes in vitro by the termination factor Rat1. J Biol Chem 288: 19750–19759.

81. KimM, AhnSH, KroganNJ, GreenblattJF, BuratowskiS (2004) Transitions in RNA polymerase II elongation complexes at the 3′ ends of genes. EMBO J 23: 354–364.

82. SchreieckA, EasterAD, EtzoldS, WiederholdK, LidschreiberM, et al. (2014) RNA polymerase II termination involves C-terminal-domain tyrosine dephosphorylation by CPF subunit Glc7. Nat Struct Mol Biol 21: 175–179.

83. Al HusiniN, KudlaP, AnsariA (2013) A role for CF1A 3′ end processing complex in promoter-associated transcription. PLoS Genet 9: e1003722.

84. HuangY, WengX, RussuIM (2010) Structural energetics of the adenine tract from an intrinsic transcription terminator. J Mol Biol 397: 677–688.

85. MartinFH, TinocoIJr (1980) DNA-RNA hybrid duplexes containing oligo(dA:rU) sequences are exceptionally unstable and may facilitate termination of transcription. Nucleic Acids Res 8: 2295–2299.

86. KireevaML, KomissarovaN, WaughDS, KashlevM (2000) The 8-nucleotide-long RNA:DNA hybrid is a primary stability determinant of the RNA polymerase II elongation complex. J Biol Chem 275: 6530–6536.

87. TagwerkerC, ZhangH, WangX, LarsenLS, LathropRH, et al. (2006) HB tag modules for PCR-based gene tagging and tandem affinity purification in Saccharomyces cerevisiae. Yeast 23: 623–632.

88. MarquardtS, HazelbakerDZ, BuratowskiS (2011) Distinct RNA degradation pathways and 3′ extensions of yeast non-coding RNA species. Transcription 2: 145–154.

89. RinesDR, ThomannD, DornJF, GoodwinP, SorgerPK (2011) Live cell imaging of yeast. Cold Spring Harb Protoc 2011

90. GentlemanRC, CareyVJ, BatesDM, BolstadB, DettlingM, et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80.

91. LangmeadB (2010) Aligning short sequencing reads with Bowtie. Curr Protoc Bioinformatics Chapter 11: Unit 11 17.

92. CrooksGE, HonG, ChandoniaJM, BrennerSE (2004) WebLogo: a sequence logo generator. Genome Res 14: 1188–1190.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#