Multifaceted Genome Control by Set1 Dependent and Independent of H3K4 Methylation and the Set1C/COMPASS Complex
Methylation of histone H3 at lysine 4 (H3K4me) is a well-documented mark associated with euchromatin. In this study, we investigate the contributions of the histone methyltransferase Set1 (KMT2) and its associated Set1C/COMPASS complex in the fission yeast Schizosaccharomyces pombe to histone H3 lysine 4 methylation (H3K4me), transcriptional repression, and genome organization. We show that Set1 exhibits multiple modes of transcriptional repression at different types of repetitive elements, requiring distinct domains of Set1 and other Set1C subunits. Despite high conservation of subunits between the S. pombe and S. cerevisiae Set1C complexes, there are considerable differences in contributions to H3K4me by several individual subunits. Furthermore, unlike a recent report in S. cerevisiae, the abundance of Set1 proteins in S. pombe is generally not coupled to either the status of H3K4 methylation or H2B ubiquitination, further highlighting critical differences in Set1 regulation between the two yeast species. We describe a role for the Set1C complex in the nuclear organization of dispersed retrotransposons into Tf bodies. Set1C maintains Tf body integrity by employing H3K4me to antagonize the activities of the H3K4 acetyltransferase Mst1. Collectively, our findings dramatically expand the regulatory landscape controlled by the Set1C complex, an important and highly conserved chromatin-modifying complex with diverse roles in genome control and development.
Vyšlo v časopise:
Multifaceted Genome Control by Set1 Dependent and Independent of H3K4 Methylation and the Set1C/COMPASS Complex. PLoS Genet 10(10): e32767. doi:10.1371/journal.pgen.1004740
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004740
Souhrn
Methylation of histone H3 at lysine 4 (H3K4me) is a well-documented mark associated with euchromatin. In this study, we investigate the contributions of the histone methyltransferase Set1 (KMT2) and its associated Set1C/COMPASS complex in the fission yeast Schizosaccharomyces pombe to histone H3 lysine 4 methylation (H3K4me), transcriptional repression, and genome organization. We show that Set1 exhibits multiple modes of transcriptional repression at different types of repetitive elements, requiring distinct domains of Set1 and other Set1C subunits. Despite high conservation of subunits between the S. pombe and S. cerevisiae Set1C complexes, there are considerable differences in contributions to H3K4me by several individual subunits. Furthermore, unlike a recent report in S. cerevisiae, the abundance of Set1 proteins in S. pombe is generally not coupled to either the status of H3K4 methylation or H2B ubiquitination, further highlighting critical differences in Set1 regulation between the two yeast species. We describe a role for the Set1C complex in the nuclear organization of dispersed retrotransposons into Tf bodies. Set1C maintains Tf body integrity by employing H3K4me to antagonize the activities of the H3K4 acetyltransferase Mst1. Collectively, our findings dramatically expand the regulatory landscape controlled by the Set1C complex, an important and highly conserved chromatin-modifying complex with diverse roles in genome control and development.
Zdroje
1. CamposEI, ReinbergD (2009) Histones: annotating chromatin. Annu Rev Genet 43: 559–599.
2. BadeauxAI, ShiY (2013) Emerging roles for chromatin as a signal integration and storage platform. Nat Rev Mol Cell Biol 14: 211–224.
3. KouzaridesT (2007) Chromatin modifications and their function. Cell 128: 693–705.
4. NomaK, AllisCD, GrewalSI (2001) Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293: 1150–1155.
5. LittMD, SimpsonM, GasznerM, AllisCD, FelsenfeldG (2001) Correlation between histone lysine methylation and developmental changes at the chicken beta-globin locus. Science 293: 2453–2455.
6. KuschT (2012) Histone H3 lysine 4 methylation revisited. Transcription 3: 310–314.
7. ShilatifardA (2012) The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 81: 65–95.
8. MorillonA, KarabetsouN, NairA, MellorJ (2005) Dynamic lysine methylation on histone H3 defines the regulatory phase of gene transcription. Mol Cell 18: 723–734.
9. SchneiderJ, WoodA, LeeJS, SchusterR, DuekerJ, et al. (2005) Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression. Mol Cell 19: 849–856.
10. DehePM, DichtlB, SchaftD, RoguevA, PamblancoM, et al. (2006) Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. J Biol Chem 281: 35404–35412.
11. KimJ, KimJA, McGintyRK, NguyenUT, MuirTW, et al. (2013) The n-SET domain of Set1 regulates H2B ubiquitylation-dependent H3K4 methylation. Mol Cell 49: 1121–1133.
12. SoaresLM, Radman-LivajaM, LinSG, RandoOJ, BuratowskiS (2014) Feedback control of Set1 protein levels is important for proper H3K4 methylation patterns. Cell Rep 6: 961–972.
13. PokholokDK, HarbisonCT, LevineS, ColeM, HannettNM, et al. (2005) Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122: 517–527.
14. CamHP, SugiyamaT, ChenES, ChenX, FitzGeraldPC, et al. (2005) Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nat Genet 37: 809–819.
15. NgHH, RobertF, YoungRA, StruhlK (2003) Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 11: 709–719.
16. KroganNJ, DoverJ, WoodA, SchneiderJ, HeidtJ, et al. (2003) The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol Cell 11: 721–729.
17. BerrettaJ, PinskayaM, MorillonA (2008) A cryptic unstable transcript mediates transcriptional trans-silencing of the Ty1 retrotransposon in S. cerevisiae. Genes Dev 22: 615–626.
18. CamblongJ, BeyrouthyN, GuffantiE, SchlaepferG, SteinmetzLM, et al. (2009) Trans-acting antisense RNAs mediate transcriptional gene cosuppression in S. cerevisiae. Genes Dev 23: 1534–1545.
19. van DijkEL, ChenCL, d'Aubenton-CarafaY, GourvennecS, KwapiszM, et al. (2011) XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. Nature 475: 114–117.
20. WeinerA, ChenHV, LiuCL, RahatA, KlienA, et al. (2012) Systematic dissection of roles for chromatin regulators in a yeast stress response. PLoS Biol 10: e1001369.
21. MargaritisT, OrealV, BrabersN, MaestroniL, Vitaliano-PrunierA, et al. (2012) Two Distinct Repressive Mechanisms for Histone 3 Lysine 4 Methylation through Promoting 3′-End Antisense Transcription. PLoS Genet 8: e1002952.
22. NomaK, GrewalSI (2002) Histone H3 lysine 4 methylation is mediated by Set1 and promotes maintenance of active chromatin states in fission yeast. Proc Natl Acad Sci U S A 99 Suppl 4: 16438–16445.
23. KanohJ, FrancesconiS, ColluraA, SchramkeV, IshikawaF, et al. (2003) The fission yeast spSet1p is a histone H3-K4 methyltransferase that functions in telomere maintenance and DNA repair in an ATM kinase Rad3-dependent pathway. J Mol Biol 326: 1081–1094.
24. RoguevA, SchaftD, ShevchenkoA, AaslandR, StewartAF (2003) High conservation of the Set1/Rad6 axis of histone 3 lysine 4 methylation in budding and fission yeasts. J Biol Chem 278: 8487–8493.
25. GrewalSI (2010) RNAi-dependent formation of heterochromatin and its diverse functions. Curr Opin Genet Dev 20: 134–141.
26. YamanakaS, MehtaS, Reyes-TurcuFE, ZhuangF, FuchsRT, et al. (2013) RNAi triggered by specialized machinery silences developmental genes and retrotransposons. Nature 493: 557–560.
27. LorenzDR, MikheyevaIV, JohansenP, MeyerL, BergA, et al. (2012) CENP-B Cooperates with Set1 in Bidirectional Transcriptional Silencing and Genome Organization of Retrotransposons. Mol Cell Biol 32: 4215–4225.
28. SchlichterA, CairnsBR (2005) Histone trimethylation by Set1 is coordinated by the RRM, autoinhibitory, and catalytic domains. EMBO J 24: 1222–1231.
29. TresauguesL, DehePM, GueroisR, Rodriguez-GilA, VarletI, et al. (2006) Structural characterization of Set1 RNA recognition motifs and their role in histone H3 lysine 4 methylation. J Mol Biol 359: 1170–1181.
30. ThorntonJL, WestfieldGH, TakahashiYH, CookM, GaoX, et al. (2014) Context dependency of Set1/COMPASS-mediated histone H3 Lys4 trimethylation. Genes Dev 28: 115–120.
31. TakahashiYH, LeeJS, SwansonSK, SarafA, FlorensL, et al. (2009) Regulation of H3K4 trimethylation via Cps40 (Spp1) of COMPASS is monoubiquitination independent: implication for a Phe/Tyr switch by the catalytic domain of Set1. Mol Cell Biol 29: 3478–3486.
32. KroganNJ, DoverJ, KhorramiS, GreenblattJF, SchneiderJ, et al. (2002) COMPASS, a histone H3 (Lysine 4) methyltransferase required for telomeric silencing of gene expression. J Biol Chem 277: 10753–10755.
33. SouthallSM, WongPS, OdhoZ, RoeSM, WilsonJR (2009) Structural basis for the requirement of additional factors for MLL1 SET domain activity and recognition of epigenetic marks. Mol Cell 33: 181–191.
34. TakahashiYH, WestfieldGH, OleskieAN, TrievelRC, ShilatifardA, et al. (2011) Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human. Proc Natl Acad Sci U S A 108: 20526–20531.
35. MatsumotoS, YanagidaM (1985) Histone gene organization of fission yeast: a common upstream sequence. EMBO J 4: 3531–3538.
36. MelloneBG, BallL, SukaN, GrunsteinMR, PartridgeJF, et al. (2003) Centromere silencing and function in fission yeast is governed by the amino terminus of histone H3. Curr Biol 13: 1748–1757.
37. XhemalceB, KouzaridesT (2010) A chromodomain switch mediated by histone H3 Lys 4 acetylation regulates heterochromatin assembly. Genes Dev 24: 647–652.
38. StewardMM, LeeJS, O'DonovanA, WyattM, BernsteinBE, et al. (2006) Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes. Nat Struct Mol Biol 13: 852–854.
39. MuellerJE, CanzeM, BrykM (2006) The requirements for COMPASS and Paf1 in transcriptional silencing and methylation of histone H3 in Saccharomyces cerevisiae. Genetics 173: 557–567.
40. LathamJA, ChosedRJ, WangS, DentSY (2011) Chromatin signaling to kinetochores: transregulation of Dam1 methylation by histone H2B ubiquitination. Cell 146: 709–719.
41. MersmanDP, DuHN, FingermanIM, SouthPF, BriggsSD (2012) Charge-based interaction conserved within histone H3 lysine 4 (H3K4) methyltransferase complexes is needed for protein stability, histone methylation, and gene expression. J Biol Chem 287: 2652–2665.
42. NagyPL, GriesenbeckJ, KornbergRD, ClearyML (2002) A trithorax-group complex purified from Saccharomyces cerevisiae is required for methylation of histone H3. Proc Natl Acad Sci U S A 99: 90–94.
43. DichtlB, AaslandR, KellerW (2004) Functions for S. cerevisiae Swd2p in 3′ end formation of specific mRNAs and snoRNAs and global histone 3 lysine 4 methylation. RNA 10: 965–977.
44. NedeaE, NalbantD, XiaD, TheoharisNT, SuterB, et al. (2008) The Glc7 phosphatase subunit of the cleavage and polyadenylation factor is essential for transcription termination on snoRNA genes. Mol Cell 29: 577–587.
45. SunZW, AllisCD (2002) Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418: 104–108.
46. BriggsSD, BrykM, StrahlBD, CheungWL, DavieJK, et al. (2001) Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev 15: 3286–3295.
47. DoverJ, SchneiderJ, Tawiah-BoatengMA, WoodA, DeanK, et al. (2002) Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J Biol Chem 277: 28368–28371.
48. HwangWW, VenkatasubrahmanyamS, IanculescuAG, TongA, BooneC, et al. (2003) A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. Mol Cell 11: 261–266.
49. WoodA, KroganNJ, DoverJ, SchneiderJ, HeidtJ, et al. (2003) Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter. Mol Cell 11: 267–274.
50. TannyJC, Erdjument-BromageH, TempstP, AllisCD (2007) Ubiquitylation of histone H2B controls RNA polymerase II transcription elongation independently of histone H3 methylation. Genes Dev 21: 835–847.
51. ZofallM, GrewalSI (2007) HULC, a histone H2B ubiquitinating complex, modulates heterochromatin independent of histone methylation in fission yeast. J Biol Chem 282: 14065–14072.
52. ChengH, HeX, MooreC (2004) The essential WD repeat protein Swd2 has dual functions in RNA polymerase II transcription termination and lysine 4 methylation of histone H3. Mol Cell Biol 24: 2932–2943.
53. RoguevA, SchaftD, ShevchenkoA, PijnappelWW, WilmM, et al. (2001) The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J 20: 7137–7148.
54. SoaresLM, BuratowskiS (2012) Yeast Swd2 Is Essential Because of Antagonism between Set1 Histone Methyltransferase Complex and APT (Associated with Pta1) Termination Factor. J Biol Chem 287: 15219–15231.
55. ShevchenkoA, RoguevA, SchaftD, BuchananL, HabermannB, et al. (2008) Chromatin Central: towards the comparative proteome by accurate mapping of the yeast proteomic environment. Genome Biol 9: R167.
56. NislowC, RayE, PillusL (1997) SET1, a yeast member of the trithorax family, functions in transcriptional silencing and diverse cellular processes. Mol Biol Cell 8: 2421–2436.
57. BrykM, BriggsSD, StrahlBD, CurcioMJ, AllisCD, et al. (2002) Evidence that Set1, a factor required for methylation of histone H3, regulates rDNA silencing in S. cerevisiae by a Sir2-independent mechanism. Curr Biol 12: 165–170.
58. KimT, BuratowskiS (2009) Dimethylation of H3K4 by Set1 recruits the Set3 histone deacetylase complex to 5′ transcribed regions. Cell 137: 259–272.
59. ZhangK, LinW, LathamJA, RieflerGM, SchumacherJM, et al. (2005) The Set1 methyltransferase opposes Ipl1 aurora kinase functions in chromosome segregation. Cell 122: 723–734.
60. WoodV, HarrisMA, McDowallMD, RutherfordK, VaughanBW, et al. (2012) PomBase: a comprehensive online resource for fission yeast. Nucleic Acids Res 40: D695–699.
61. MoazedD (2011) Mechanisms for the inheritance of chromatin states. Cell 146: 510–518.
62. Reyes-TurcuFE, GrewalSI (2012) Different means, same end-heterochromatin formation by RNAi and RNAi-independent RNA processing factors in fission yeast. Curr Opin Genet Dev 22: 156–163.
63. YamadaT, FischleW, SugiyamaT, AllisCD, GrewalSI (2005) The nucleation and maintenance of heterochromatin by a histone deacetylase in fission yeast. Mol Cell 20: 173–185.
64. ShankaranarayanaGD, MotamediMR, MoazedD, GrewalSI (2003) Sir2 regulates histone H3 lysine 9 methylation and heterochromatin assembly in fission yeast. Curr Biol 13: 1240–1246.
65. AlperBJ, JobG, YadavRK, ShankerS, LoweBR, et al. (2013) Sir2 is required for Clr4 to initiate centromeric heterochromatin assembly in fission yeast. EMBO J 32: 2321–2335.
66. GuillemetteB, DrogarisP, LinHH, ArmstrongH, Hiragami-HamadaK, et al. (2011) H3 lysine 4 is acetylated at active gene promoters and is regulated by H3 lysine 4 methylation. PLoS Genet 7: e1001354.
67. TanakaA, TanizawaH, SriswasdiS, IwasakiO, ChatterjeeAG, et al. (2012) Epigenetic regulation of condensin-mediated genome organization during the cell cycle and upon DNA damage through histone H3 lysine 56 acetylation. Mol Cell 48: 532–546.
68. CamHP, NomaK, EbinaH, LevinHL, GrewalSI (2008) Host genome surveillance for retrotransposons by transposon-derived proteins. Nature 451: 431–436.
69. BahlerJ, WuJQ, LongtineMS, ShahNG, McKenzieA3rd, et al. (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14: 943–951.
70. MorenoS, KlarA, NurseP (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194: 795–823.
71. MudgeDK, HoffmanCA, LubinskiTJ, HoffmanCS (2012) Use of a ura5+-lys7+ cassette to construct unmarked gene knock-ins in Schizosaccharomyces pombe. Curr Genet 58: 59–64.
72. LyneR, BurnsG, MataJ, PenkettCJ, RusticiG, et al. (2003) Whole-genome microarrays of fission yeast: characteristics, accuracy, reproducibility, and processing of array data. BMC Genomics 4: 27.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2014 Číslo 10
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- The Master Activator of IncA/C Conjugative Plasmids Stimulates Genomic Islands and Multidrug Resistance Dissemination
- A Splice Mutation in the Gene Causes High Glycogen Content and Low Meat Quality in Pig Skeletal Muscle
- Keratin 76 Is Required for Tight Junction Function and Maintenance of the Skin Barrier
- A Role for Taiman in Insect Metamorphosis