Signature Gene Expression Reveals Novel Clues to the Molecular Mechanisms of Dimorphic Transition in
Penicillium marneffei is a significant dimorphic fungal pathogen capable of causing lethal systemic infections. It grows in a yeast-like form at mammalian body temperature and a mold-like form at ambient temperature. The thermal dimorphism of P. marneffei is closely related to its virulence. In the present study, we re-sequenced the genome of P. marneffei using Illumina and PacBio sequencing technologies, and simultaneously assembled these newly sequenced reads in different lengths with previously obtained Sanger sequences. This hybrid assembly greatly improved the quality of the genome sequences. Next, we used RNA-seq to measure the global gene expression of P. marneffei at different phases and during dimorphic phase transitions. We found that 27% of genes showed signature expression patterns, suggesting that these genes function at different stages in the life cycle of P. marneffei. Moreover, genes with same expression patterns tend to be clustered together as neighbors to each other in the genome, suggesting an orchestrated transcriptional regulation for multiple neighboring genes. Over-expression of the MADS-box transcription factor, madsA, located in one of these clusters, confirms the function of this gene in driving the yeast-to-mycelia phase transition irrespective of the temperature cues. Our data also implies diverse roles of secreted proteins and non-coding RNAs in dimorphic transition in P. marneffei.
Vyšlo v časopise:
Signature Gene Expression Reveals Novel Clues to the Molecular Mechanisms of Dimorphic Transition in. PLoS Genet 10(10): e32767. doi:10.1371/journal.pgen.1004662
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1004662
Souhrn
Penicillium marneffei is a significant dimorphic fungal pathogen capable of causing lethal systemic infections. It grows in a yeast-like form at mammalian body temperature and a mold-like form at ambient temperature. The thermal dimorphism of P. marneffei is closely related to its virulence. In the present study, we re-sequenced the genome of P. marneffei using Illumina and PacBio sequencing technologies, and simultaneously assembled these newly sequenced reads in different lengths with previously obtained Sanger sequences. This hybrid assembly greatly improved the quality of the genome sequences. Next, we used RNA-seq to measure the global gene expression of P. marneffei at different phases and during dimorphic phase transitions. We found that 27% of genes showed signature expression patterns, suggesting that these genes function at different stages in the life cycle of P. marneffei. Moreover, genes with same expression patterns tend to be clustered together as neighbors to each other in the genome, suggesting an orchestrated transcriptional regulation for multiple neighboring genes. Over-expression of the MADS-box transcription factor, madsA, located in one of these clusters, confirms the function of this gene in driving the yeast-to-mycelia phase transition irrespective of the temperature cues. Our data also implies diverse roles of secreted proteins and non-coding RNAs in dimorphic transition in P. marneffei.
Zdroje
1. CooneyNM, KleinBS (2008) Fungal adaptation to the mammalian host: it is a new world, after all. Current Opinion in Microbiology 11: 511–516.
2. RappleyeCA, GoldmanWE (2006) Defining virulence genes in the dimorphic fungi. Annual Review of Microbiology 60: 281–303.
3. KleinBS, TebbetsB (2007) Dimorphism and virulence in fungi. Current Opinion in Microbiology 10: 314–319.
4. Mandell GL, Bennett JE, Dolin R (2010) Mandell, Douglas, and Bennett's principles and practice of infectious diseases. Philadelphia, PA: Churchill Livingstone/Elsevier.
5. NemecekJC, WuthrichM, KleinBS (2006) Global control of dimorphism and virulence in fungi. Science 312: 583–588.
6. CooperCR, VanittanakomN (2008) Insights into the pathogenicity of Penicillium marneffei. Future Microbiology 3: 43–55.
7. SamsonRA, YilmazN, HoubrakenJ, SpierenburgH, SeifertKA, et al. (2011) Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. Studies in Mycology 159–183.
8. BoyceKJ, AndrianopoulosA (2013) Morphogenetic circuitry regulating growth and development in the dimorphic pathogen Penicillium marneffei. Eukaryotic Cell 12: 154–160.
9. XiLY, XuXR, LiuW, LiXQ, LiuYL, et al. (2007) Differentially expressed proteins of pathogenic Penicillium marneffei in yeast and mycelial phases. Journal of Medical Microbiology 56: 298–304.
10. ChandlerJM, TreeceER, TrenaryHR, BrennemanJL, FlicknerTJ, et al. (2008) Protein profiling of the dimorphic, pathogenic fungus, Penicillium marneffei. Proteome Science 6: 17.
11. LinX, RanY, GouL, HeF, ZhangR, et al. (2012) Comprehensive transcription analysis of human pathogenic fungus Penicillium marneffei in mycelial and yeast cells. Medical Mycology 50: 835–842.
12. PasrichaS, PayneM, CanovasD, PaseL, NgaosuwankulN, et al. (2013) Cell-type-specific transcriptional profiles of the dimorphic pathogen Penicillium marneffei reflect distinct reproductive, morphological, and environmental demands. G3-Genes Genomes Genetics 3: 1997–2014.
13. YangE, WangG, WooPCY, LauSKP, ChowWN, et al. (2013) Unraveling the molecular basis of temperature-dependent genetic regulation in Penicillium marneffei. Eukaryotic Cell 12: 1214–1224.
14. WooPCY, LauSKP, LiuB, CaiJJ, ChongKTK, et al. (2011) Draft genome sequence of Penicillium marneffei strain PM1. Eukaryotic Cell 10: 1740–1741.
15. KorenS, SchatzMC, WalenzBP, MartinJ, HowardJT, et al. (2012) Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nature Biotechnology 30: 693–700.
16. MillerJR, DelcherAL, KorenS, VenterE, WalenzBP, et al. (2008) Aggressive assembly of pyrosequencing reads with mates. Bioinformatics 24: 2818–2824.
17. SimpsonJT, WongK, JackmanSD, ScheinJE, JonesSJM, et al. (2009) ABySS: A parallel assembler for short read sequence data. Genome Research 19: 1117–1123.
18. LiRQ, ZhuHM, RuanJ, QianWB, FangXD, et al. (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Research 20: 265–272.
19. MortazaviA, SchwarzEM, WilliamsB, SchaefferL, AntoshechkinI, et al. (2010) Scaffolding a Caenorhabditis nematode genome with RNA-seq. Genome Research 20: 1740–1747.
20. SupekF, BosnjakM, SkuncaN, SmucT (2011) REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLoS One 6: e21800.
21. BarreraLO, RenB (2006) The transcriptional regulatory code of eukaryotic cells insights from genome-wide analysis of chromatin organization and transcription factor binding. Current Opinion in Cell Biology 18: 291–298.
22. HeintzmanND, RenB (2007) The gateway to transcription: identifying, characterizing and understanding promoters in the eukaryotic genome. Cellular and Molecular Life Sciences 64: 386–400.
23. ElbleR, TyeBK (1991) Both activation and repression of a-mating-type-specific genes in yeast require transcription factor Mcm1. Proceedings of the National Academy of Sciences of the United States of America 88: 10966–10970.
24. NielsenO, FriisT, KjaerulffS (1996) The Schizosaccharomyces pombe map1 gene encodes an SRF/MCM1-related protein required for P-cell specific gene expression. Molecular & General Genetics 253: 387–392.
25. YabanaN, YamamotoM (1996) Schizosaccharomyces pombe map1+ encodes a MADS-box-family protein required for cell-type-specific gene expression. Molecular and Cellular Biology 16: 3420–3428.
26. LauSKP, TseH, ChanJSY, ZhouAC, CurreemSOT, et al. (2013) Proteome profiling of the dimorphic fungus Penicillium marneffei extracellular proteins and identification of glyceraldehyde-3-phosphate dehydrogenase as an important adhesion factor for conidial attachment. FEBS Journal 280: 6613–6626.
27. KamperJ, KahmannR, BolkerM, MaLJ, BrefortT, et al. (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444: 97–101.
28. MeerupatiT, AnderssonKM, FrimanE, KumarD, TunlidA, et al. (2013) Genomic mechanisms accounting for the adaptation to parasitism in nematode-trapping fungi. PLoS Genetics 9: e1003909.
29. WanY, KerteszM, SpitaleRC, SegalE, ChangHY (2011) Understanding the transcriptome through RNA structure. Nature Reviews Genetics 12: 641–655.
30. ReinekeLC, KomarAA, CapraraMG, MerrickWC (2008) A small stem loop element directs internal initiation of the URE2 internal ribosome entry site in Saccharomyces cerevisiae. Journal of Biological Chemistry 283: 19011–19025.
31. WanY, QuK, OuyangZQ, KerteszM, LiJ, et al. (2012) Genome-wide Measurement of RNA Folding Energies. Molecular Cell 48: 169–181.
32. MortimerSA, KidwellMA, DoudnaJA (2014) Insights into RNA structure and function from genome-wide studies. Nat Rev Genet 15: 469–479.
33. LorenzR, BernhartSH, SiederdissenCHZ, TaferH, FlammC, et al. (2011) ViennaRNA Package 2.0. Algorithms for Molecular Biology 6: 26.
34. NakagawaS, NiimuraY, GojoboriT, TanakaH, MiuraK (2008) Diversity of preferred nucleotide sequences around the translation initiation codon in eukaryote genomes. Nucleic Acids Research 36: 861–871.
35. MetzkerML (2010) Sequencing technologies - the next generation. Nature Reviews Genetics 11: 31–46.
36. NiuBF, FuLM, SunSL, LiWZ (2010) Artificial and natural duplicates in pyrosequencing reads of metagenomic data. BMC Bioinformatics 11: 187.
37. DohmJC, LottazC, BorodinaT, HimmelbauerH (2008) Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Research 36: e105.
38. KingsfordC, SchatzMC, PopM (2010) Assembly complexity of prokaryotic genomes using short reads. BMC Bioinformatics 11: 21.
39. SchadtEE, TurnerS, KasarskisA (2010) A window into third-generation sequencing. Human Molecular Genetics 19: R227–R240.
40. BashirA, KlammerAA, RobinsWP, ChinCS, WebsterD, et al. (2012) A hybrid approach for the automated finishing of bacterial genomes. Nature Biotechnology 30: 701–707.
41. GiffordTD, CooperCR (2009) Karyotype determination and gene mapping in two clinical isolates of Penicillium marneffei. Medical Mycology 47: 286–295.
42. YuenK, PascalG, WongSSY, GlaserP, WooPCY, et al. (2003) Exploring the Penicillium marneffei genome. Archives of Microbiology 179: 339–353.
43. FrangeulL, NelsonKE, BuchrieserC, DanchinA, GlaserP, et al. (1999) Cloning and assembly strategies in microbial genome projects. Microbiology 145: 2625–2634.
44. SolovyevV, KosarevP, SeledsovI, VorobyevD (2006) Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biology 7: S10.
45. JonesP, BinnsD, ChangH-Y, FraserM, LiW, et al. (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30: 1236–1240.
46. KimD, PerteaG, TrapnellC, PimentelH, KelleyR, et al. (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology 14: R36.
47. XuG, DengN, ZhaoZ, JudehT, FlemingtonE, et al. (2011) SAMMate: a GUI tool for processing short read alignments in SAM/BAM format. Source Code for Biology and Medicine 6: 2.
48. MortazaviA, WilliamsBA, MccueK, SchaefferL, WoldB (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 5: 621–628.
49. KummasookA, TzarphmaagA, ThirachS, PongpomM, CooperCR, et al. (2011) Penicillium marneffei actin expression during phase transition, oxidative stress, and macrophage infection. Molecular Biology Reports 38: 2813–2819.
50. ThirachS, CooperCR, VanittanakomN (2008) Molecular analysis of the Penicillium marneffei glyceraldehyde-3-phosphate dehydrogenase-encoding gene (gpdA) and differential expression of gpdA and the isocitrate lyase-encoding gene (acuD) upon internalization by murine macrophages. Journal of Medical Microbiology 57: 1322–1328.
51. WooPCY, ChongKTK, LauCCY, WongSSY, LauSKP, et al. (2006) A novel approach for screening immunogenic proteins in Penicillium marneffei using the ΔAFMP1 ΔAFMP2 deletion mutant of Aspergillus fumigatus. FEMS Microbiology Letters 262: 138–147.
52. WooPCY, LamCW, TamEWT, LeungCKF, WongSSY, et al. (2012) First discovery of two polyketide synthase genes for mitorubrinic acid and mitorubrinol yellow pigment biosynthesis and implications in virulence of Penicillium marneffei. PLoS Neglected Tropical Diseases 6: e1871.
53. LauSKP, ChowWN, WongAYP, YeungJMY, BaoJ, et al. (2013) Identification of microRNA-like RNAs in mycelial and yeast phases of the thermal dimorphic fungus Penicillium marneffei. PLoS Neglected Tropical Diseases 7: e2398.
54. MinXJ (2010) Evaluation of computational methods for secreted protein prediction in different Eukaryotes. Journal of Proteomics & Bioinformatics 3: 143–147.
55. HortonP, ParkKJ, ObayashiT, FujitaN, HaradaH, et al. (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Research 35: W585–W587.
56. PetersenTN, BrunakS, von HeijneG, NielsenH (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods 8: 785–786.
57. KallL, KroghA, SonnhammerELL (2007) Advantages of combined transmembrane topology and signal peptide prediction - the Phobius web server. Nucleic Acids Research 35: W429–W432.
58. do AmaralAM, AntoniwJ, RuddJJ, Hammond-KosackKE (2012) Defining the predicted protein secretome of the fungal wheat leaf pathogen Mycosphaerella graminicola. PLoS One 7: e49904.
59. KroghA, LarssonB, von HeijneG, SonnhammerELL (2001) Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Mol Biol 305: 567–580.
60. de CastroE, SigristCJA, GattikerA, BulliardV, Langendijk-GenevauxPS, et al. (2006) ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Research 34: W362–W365.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2014 Číslo 10
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- The Master Activator of IncA/C Conjugative Plasmids Stimulates Genomic Islands and Multidrug Resistance Dissemination
- A Splice Mutation in the Gene Causes High Glycogen Content and Low Meat Quality in Pig Skeletal Muscle
- Keratin 76 Is Required for Tight Junction Function and Maintenance of the Skin Barrier
- A Role for Taiman in Insect Metamorphosis