#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Comparison of gridded precipitation datasets for rainfall-runoff and inundation modeling in the Mekong River Basin


Autoři: Sophal Try aff001;  Shigenobu Tanaka aff003;  Kenji Tanaka aff003;  Takahiro Sayama aff003;  Chantha Oeurng aff002;  Sovannara Uk aff004;  Kaoru Takara aff005;  Maochuan Hu aff003;  Dawei Han aff006
Působiště autorů: Graduate School of Engineering, Kyoto University, Kyoto, Japan aff001;  Faculty of Hydrology and Water Resources Engineering, Institute of Technology of Cambodia, Phnom Penh, Cambodia aff002;  Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan aff003;  Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Tokyo, Japan aff004;  Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan aff005;  Department of Civil Engineering, University of Bristol, BS8 1TR, Bristol, United Kingdom aff006
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0226814

Souhrn

Precipitation, as a primary hydrological variable in the water cycle plays an important role in hydrological modeling. The reliability of hydrological modeling is highly related to the quality of precipitation data. Accurate long-term gauged precipitation in the Mekong River Basin, however, is limited. Therefore, the main objective of this study is to assess the performances of various gridded precipitation datasets in rainfall-runoff and flood-inundation modeling of the whole basin. Firstly, the performance of the Rainfall-Runoff-Inundation (RRI) model in this basin was evaluated using the gauged rainfall. The calibration (2000–2003) and validation (2004–2007) results indicated that the RRI model had acceptable performance in the Mekong River Basin. In addition, five gridded precipitation datasets including APHRODITE, GPCC, PERSIANN-CDR, GSMaP (RNL), and TRMM (3B42V7) from 2000 to 2007 were applied as the input to the calibrated model. The results of the simulated river discharge indicated that TRMM, GPCC, and APHRODITE performed better than other datasets. The statistical index of the annual maximum inundated area indicated similar conclusions. Thus, APHRODITE, TRMM, and GPCC precipitation datasets were considered suitable for rainfall-runoff and flood inundation modeling in the Mekong River Basin. This study provides useful guidance for the application of gridded precipitation in hydrological modeling in the Mekong River basin.

Klíčová slova:

Simulation and modeling – Flooding – Rain – Lakes – Rivers – Vietnam – Surface water – Cambodia


Zdroje

1. MRC (Mekong River Commission). Planning atlas of the lower Mekong river basin. 2011. Vientiane, Laos PDR.

2. Try S, Lee D, Lee G. Application of nightlight satellite imagery for assessing flooding potential area in the Mekong river basin. J. Korea Warer Resour. Assoc. 2018a; 51(7), 565–574.

3. MRC (Mekong River Commission). Annual Mekong Flood Report 2011. 2015. 1728–3248.

4. Lu X, Kummu M, Oeurng C. Reappraisal of Sediment Dynamics in the Lower Mekong River, Cambodia. Earth Surface Processes and Landforms. 2014. 39 (14): 1855–1865. doi: 10.1002/esp.3573

5. Try S, Lee G, Yu W, Oeurng C. Delineation of flood-prone areas using geomorphological approach in the Mekong River Basin. Quaternary International. 2019; 503: 79–86.

6. Hu MC, Zhang XQ, Li Y, Yang H, Tanaka K. Flood mitigation performance of low impact development technologies under different storms for retrofitting an urbanized area. Journal of Cleaner Production. 2019; 222: 373–380. doi: 10.1016/j.jclepro.2019.03.044

7. Oeurng C, Thomas AC, Chung S, Kondolf MG, Thanapon P, Mauricio EA. Assessing Climate Change Impacts on River Flows in the Tonle Sap Lake Basin, Cambodia. Water. 2019; 11: 618. doi: 10.3390/w11030618

8. Try S, Lee G, Yu W, Oeurng C, Jang C. Large-Scale Flood-Inundation Modeling in the Mekong River Basin. Journal of Hydrologic Engineering. 2018b; 23(7). doi: 10.1061/(ASCE)HE.1943-5584.0001664

9. Tanaka T, Yoshioka H, Siev S, Fujii H, Fujihara Y, Hoshikawa K, et al. An Integrated Hydrological-Hydraulic Model for Simulating Surface Water Flows of a Shallow Lake Surrounded by Large Floodplains. Water. 2018; 10(9), 1213.

10. Hu M, Sayama T, Duan W, Takara K, He B, Luo P. Assessment of hydrological extremes in the Kamo River Basin, Japan. Hydrological Sciences Journal. 2017; 62(8): 1255–1265. doi: 10.1080/02626667.2017.1319063

11. Ono K, Kazama, Luminda NG, Koichiro K. An Investigation of Extreme Daily Rainfall in the Mekong River Basin Using a Gridded Precipitation Dataset. Hydrological Research Letters. 2013; 7(3): 66–72.

12. Luo X, Wu W, He D, Li Y, Ji X. Hydrological Simulation Using TRMM and CHIRPS Precipitation Estimates in the Lower Lancang-Mekong River Basin. Chinese Geographical Science. 2019; 29(1): 13–25.

13. Phoeurn C Ly S. Assessment of satellite rainfall estimates as a pre-analysis for water environment analytical tools: A case study for Tonle Sap Lake in Cambodia. Engineering Journal. 2018; 22: 229–241.

14. Thom VT, Dao NK, Do QL. Using Gridded Rainfall Products in Simulating Streamflow in a Tropical Catchment–A Case Study of the Srepok River Catchment, Vietnam. Journal of Hydrology and Hydromechanics. 2017; 65(1): 18–25.

15. Kummu M. Water management in Angkor: Human impacts on hydrology and sediment transportation. J. Environ. Manage. 2009; 90: 1413–1421. doi: 10.1016/j.jenvman.2008.08.007 18926615

16. Siev S, Heejun Y, Sok T, Uk S, Song L, Dilini K, et al. Sediment Dynamics in a Large Shallow Lake Characterized by Seasonal Flood Pulse in Southeast Asia. Science of the Total Environment. 2018; 631: 597–607. doi: 10.1016/j.scitotenv.2018.03.066 29533796

17. Uk S, Yoshimura C, Siev S, Try S, Yang H, Oeurng C, et al. Tonle Sap Lake: Current Status and Important Research Directions for Environmental Management. Lakes & Reservoirs. 2018; 23(3): 177–189. doi: 10.1111/lre.12222

18. Sayama T, Ozawa G, Kawakami T, Nabesaka S. Rainfall–Runoff–Inundation Analysis of the 2010 Pakistan Flood in the Kabul River Basin. Hydrological Sciences Journal. 2012; 57(2): 298–312.

19. Bhagabati SS, Akiyuki K. Consideration of the Rainfall-Runoff-Inundation (RRI) Model for Flood Mapping in a Deltaic Area of Myanmar. Hydrological Research Letters. 2017; 11(3): 155–60.

20. Kuribayashi D, Miho O, Sayama T. Utilization of the Flood Simulation Model for Disaster Management of Local Government. Journal of Disaster Research. 2016; 11(6): 1161–1175.

21. Perera EDP, Sayama T, Magome J, Hasegawa A, Iwami Y. RCP8. 5-Based Future Flood Hazard Analysis for the Lower Mekong River Basin. Hydrology. 2017; 4(4): 55.

22. Sayama T, Tatebe Y, Iwami Y, Tanaka S. Hydrologic Sensitivity of Flood Runoff and Inundation: 2011 Thailand Floods in the Chao Phraya River Basin. Natural Hazards and Earth System Sciences.2015; 15(7): 1617–1630. doi: 10.5194/nhess-15-1617-2015

23. Shrestha BB, Okazumi T, Miyamoto M, Sawano H. Flood Damage Assessment in the Pampanga River Basin of the Philippines. Journal of Flood Risk Management. 2016; 4: 355–369.

24. Duan Q, Soroosh S, Vijai KG. Optimal Use of the SCE-UA Global Optimization Method for Calibrating Watershed Models. Journal of Hydrology. 1994.;158(3–4): 265–84.

25. Yamazaki D, Ikeshima D, Tawatari R, Yamaguchi T, O'Loughlin F, Neal JC, et al. A high accuracy map of global terrain elevations. Geophysical Research Letters. 2017; 44: 5844–5853. doi: 10.1002/2017GL072874

26. Friedl M A, Sulla-Menashe D, Tan B, Schneider A, Ramankutty N, Sibley A, et al. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010; 114(1): 168–182. doi: 10.1016/j.rse.2009.08.016

27. Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, et al. The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 2015; 93: 5–48. doi: 10.2151/jmsj.2015-001

28. Yasutomi N, Atsushi H, Akiyo Y. Development of a Long-Term Daily Gridded Temperature Dataset and Its Application to Rain/Snow Discrimination of Daily Precipitation. Global Environmental Research. 2011; 15(2): 165–172.

29. Yatagai A, Kenji K, Osamu A, Atsushi H, Natsuko Y, Akio K. APHRODITE: Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges. Bulletin of the American Meteorological Society. 2012; 93(9): 1401–1415.

30. Ziese M, Armin RS, Andreas B, Peter F, Anja MC, Udo S. GPCC Full Data Daily Version.2018 at 1.0°: Daily Land-Surface Precipitation from Rain-Gauges Built on GTS-Based and Historic Data. 2018. doi: 10.5676/DWD_GPCC/FD_D_V2018_100

31. Ashouri H, Kuo-Lin H, Soroosh S, Dan KB, Kenneth RK, Dewayne CL, et al. PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bulletin of the American Meteorological Society. 2015; 96(1): 69–83.

32. Huffman GJ, David TB, Eric JN, David BW, Robert FA, Guojun G, et al. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. Journal of Hydrometeorology. 2007; 8(1): 38–55.

33. Kubota T, Shoichi S, Hiroshi H, Kazumasa A, Nobuhiro T, Shinta S, et al. Global Precipitation Map Using Satellite-Borne Microwave Radiometers by the GSMaP Project: Production and Validation. IEEE Transactions on Geoscience and Remote Sensing. 2007; 45(7): 2259–2275.

34. Hu M, Sayama T, Zhang X, Tanaka K, Takara K, Yang, H. Evaluation of low impact development approach for mitigating flood inundation at a watershed scale in China. J Environ Manage. 2017; 193: 430–438. http://dx.doi.org/10.1016/j.jenvman.2017.02.020 28237222

35. Habib E, Haile A, Sazib N, Zhang Y, Rientjes T. Effect of bias correction of satellite-rainfall estimates on runoff simulations at the source of the Upper Blue Nile. Remote Sensing. 2010; 6(7): 6688–6708.

36. Sayama T, Tatebe Y, Tanaka S. An Emergency Response-Type Rainfall-Runoff-Inundation Simulation for 2011 Thailand Floods. Journal of Flood Risk Management. 2015b; 10(1): 65–78.

37. Okada T, McAneney KJ, Chen K. Estimating insured residential losses from large flood scenarios on the Tone River, Japan–a data integration approach, Nat. Hazards Earth Syst. Sci. 2011; 11: 3373–3382. doi: 10.5194/nhess-11-3373-2011

38. Guo H, Sheng C, Anming B, Jujun H, Abebe G, Xianwu X, et al. Inter-comparison of high-resolution satellite precipitation products over Central Asia. Remote Sensing. 2015; 7(6): 7181–7211.

39. Tan M, Ab I, Zheng D, Arthur C, Vincent C. Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia. Remote Sensing. 2015; 2: 1504–1528.

40. Vu MT, Raghavan SV, Liong SY. SWAT use of gridded observations for simulating runoff–a Vietnam river basin study. Hydrology and Earth System Sciences. 2012; 16(8): 2801–2811.


Článok vyšiel v časopise

PLOS One


2020 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#