#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The gene encoding the ketogenic enzyme HMGCS2 displays a unique expression during gonad development in mice


Autoři: Stefan Bagheri-Fam aff001;  Huijun Chen aff002;  Sean Wilson aff003;  Katie Ayers aff003;  James Hughes aff005;  Frederique Sloan-Bena aff006;  Pierre Calvel aff007;  Gorjana Robevska aff003;  Beatriz Puisac aff008;  Kamila Kusz-Zamelczyk aff009;  Stefania Gimelli aff006;  Anna Spik aff009;  Jadwiga Jaruzelska aff009;  Alina Warenik-Szymankiewicz aff010;  Sultana Faradz aff011;  Serge Nef aff006;  Juan Pié aff008;  Paul Thomas aff005;  Andrew Sinclair aff003;  Dagmar Wilhelm aff001
Působiště autorů: Department of Anatomy & Neuroscience, The University of Melbourne, Melbourne, Australia aff001;  Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia aff002;  Murdoch Children’s Research Institute, Melbourne, Australia aff003;  Department of Paediatrics, The University of Melbourne, Melbourne, Australia aff004;  School of Biological Sciences, University of Adelaide, Adelaide, Australia aff005;  Service of Genetic Medicine, University Geneva Hospitals, Geneva, Switzerland aff006;  Department of Genetics, Medicine & Development, University of Geneva, Geneva, Switzerland aff007;  Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, University of Zaragoza, CIBERER-GCV02 and ISS-Aragon, Zaragoza, Spain aff008;  Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland aff009;  Department of Gynecological Endocrinology Poznan University of Medical Sciences, Poznan, Poland aff010;  Center for Biomedical Research Faculty of Medicine Diponegoro University (FMDU), Semarang, Indonesia aff011
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0227411

Souhrn

Disorders/differences of sex development (DSD) cause profound psychological and reproductive consequences for the affected individuals, however, most are still unexplained at the molecular level. Here, we present a novel gene, 3-hydroxy-3-methylglutaryl coenzyme A synthase 2 (HMGCS2), encoding a metabolic enzyme in the liver important for energy production from fatty acids, that shows an unusual expression pattern in developing fetal mouse gonads. Shortly after gonadal sex determination it is up-regulated in the developing testes following a very similar spatial and temporal pattern as the male-determining gene Sry in Sertoli cells before switching to ovarian enriched expression. To test if Hmgcs2 is important for gonad development in mammals, we pursued two lines of investigations. Firstly, we generated Hmgcs2-null mice using CRISPR/Cas9 and found that these mice had gonads that developed normally even on a sensitized background. Secondly, we screened 46,XY DSD patients with gonadal dysgenesis and identified two unrelated patients with a deletion and a deleterious missense variant in HMGCS2 respectively. However, both variants were heterozygous, suggesting that HMGCS2 might not be the causative gene. Analysis of a larger number of patients in the future might shed more light into the possible association of HMGCS2 with human gonadal development.

Klíčová slova:

Gene expression – Cell differentiation – Embryos – Gonads – Ovaries – Germ cells – Testes – Sertoli cells


Zdroje

1. Hughes IA, Houk C, Ahmed SF, Lee PA. Consensus statement on management of intersex disorders. Journal of pediatric urology. 2006;2(3):148–62. Epub 2008/10/25. doi: 10.1016/j.jpurol.2006.03.004 18947601.

2. Vilain E, Achermann JC, Eugster EA, Harley VR, Morel Y, Wilson JD, et al. We used to call them hermaphrodites. Genetics in medicine: official journal of the American College of Medical Genetics. 2007;9(2):65–6. Epub 2007/02/17. doi: 10.1097/GIM.0b013e31802cffcf 17304046.

3. Ostrer H. Disorders of sex development (DSDs): an update. The Journal of clinical endocrinology and metabolism. 2014;99(5):1503–9. Epub 2014/04/25. doi: 10.1210/jc.2013-3690 24758178.

4. Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature. 1990;346(6281):240–4. Epub 1990/07/19. doi: 10.1038/346240a0 1695712.

5. Berta P, Hawkins JR, Sinclair AH, Taylor A, Griffiths BL, Goodfellow PN, et al. Genetic evidence equating SRY and the testis-determining factor. Nature. 1990;348(6300):448–50. Epub 1990/11/29. doi: 10.1038/348448A0 2247149.

6. Baxter RM, Arboleda VA, Lee H, Barseghyan H, Adam MP, Fechner PY, et al. Exome sequencing for the diagnosis of 46,XY disorders of sex development. The Journal of clinical endocrinology and metabolism. 2015;100(2):E333–44. Epub 2014/11/11. doi: 10.1210/jc.2014-2605 25383892; PubMed Central PMCID: PMC4318895.

7. Eggers S, Sadedin S, van den Bergen JA, Robevska G, Ohnesorg T, Hewitt J, et al. Disorders of sex development: insights from targeted gene sequencing of a large international patient cohort. Genome biology. 2016;17(1):243. Epub 2016/12/03. doi: 10.1186/s13059-016-1105-y 27899157; PubMed Central PMCID: PMC5126855.

8. Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer J, et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell. 1994;79(6):1111–20. Epub 1994/12/16. doi: 10.1016/0092-8674(94)90041-8 8001137.

9. Foster JW, Dominguez-Steglich MA, Guioli S, Kwok C, Weller PA, Stevanovic M, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature. 1994;372(6506):525–30. Epub 1994/12/08. doi: 10.1038/372525a0 7990924.

10. Chaboissier MC, Kobayashi A, Vidal VI, Lutzkendorf S, van de Kant HJ, Wegner M, et al. Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development (Cambridge, England). 2004;131(9):1891–901. Epub 2004/04/02. doi: 10.1242/dev.01087 15056615.

11. Barrionuevo F, Bagheri-Fam S, Klattig J, Kist R, Taketo MM, Englert C, et al. Homozygous inactivation of Sox9 causes complete XY sex reversal in mice. Biology of reproduction. 2006;74(1):195–201. doi: 10.1095/biolreprod.105.045930 16207837.

12. Sekido R, Lovell-Badge R. Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature. 2008;453(7197):930–4. Epub 2008/05/06. doi: 10.1038/nature06944 18454134.

13. Wilhelm D, Yang JX, Thomas P. Mammalian sex determination and gonad development. Current topics in developmental biology. 2013;106:89–121. Epub 2013/12/03. doi: 10.1016/B978-0-12-416021-7.00003-1 24290348.

14. Matoba S, Hiramatsu R, Kanai-Azuma M, Tsunekawa N, Harikae K, Kawakami H, et al. Establishment of testis-specific SOX9 activation requires high-glucose metabolism in mouse sex differentiation. Developmental biology. 2008;324(1):76–87. doi: 10.1016/j.ydbio.2008.09.004 18823970.

15. Matoba S, Kanai Y, Kidokoro T, Kanai-Azuma M, Kawakami H, Hayashi Y, et al. A novel Sry-downstream cellular event which preserves the readily available energy source of glycogen in mouse sex differentiation. J Cell Sci. 2005;118(Pt 7):1449–59. doi: 10.1242/jcs.01738 15769848.

16. Ottolenghi C, Pelosi E, Tran J, Colombino M, Douglass E, Nedorezov T, et al. Loss of Wnt4 and Foxl2 leads to female-to-male sex reversal extending to germ cells. Human molecular genetics. 2007;16(23):2795–804. Epub 2007/08/31. doi: 10.1093/hmg/ddm235 17728319.

17. Parma P, Radi O, Vidal V, Chaboissier MC, Dellambra E, Valentini S, et al. R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nature genetics. 2006;38(11):1304–9. Epub 2006/10/17. doi: 10.1038/ng1907 17041600.

18. Auguste A, Chassot AA, Gregoire EP, Renault L, Pannetier M, Treier M, et al. Loss of R-spondin1 and Foxl2 amplifies female-to-male sex reversal in XX mice. Sexual development: genetics, molecular biology, evolution, endocrinology, embryology, and pathology of sex determination and differentiation. 2011;5(6):304–17. Epub 2011/11/26. doi: 10.1159/000334517 22116255.

19. Chassot AA, Ranc F, Gregoire EP, Roepers-Gajadien HL, Taketo MM, Camerino G, et al. Activation of beta-catenin signaling by Rspo1 controls differentiation of the mammalian ovary. Human molecular genetics. 2008;17(9):1264–77. Epub 2008/02/06. doi: 10.1093/hmg/ddn016 18250098.

20. Tomizuka K, Horikoshi K, Kitada R, Sugawara Y, Iba Y, Kojima A, et al. R-spondin1 plays an essential role in ovarian development through positively regulating Wnt-4 signaling. Human molecular genetics. 2008;17(9):1278–91. Epub 2008/02/06. doi: 10.1093/hmg/ddn036 18250097.

21. Maatouk DM, DiNapoli L, Alvers A, Parker KL, Taketo MM, Capel B. Stabilization of beta-catenin in XY gonads causes male-to-female sex-reversal. Human molecular genetics. 2008;17(19):2949–55. Epub 2008/07/12. doi: 10.1093/hmg/ddn193 18617533; PubMed Central PMCID: PMC2536503.

22. Casals N, Roca N, Guerrero M, Gil-Gomez G, Ayte J, Ciudad CJ, et al. Regulation of the expression of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene. Its role in the control of ketogenesis. The Biochemical journal. 1992;283 (Pt 1):261–4. Epub 1992/04/01. doi: 10.1042/bj2830261 1348927; PubMed Central PMCID: PMC1131023.

23. McGarry JD, Foster DW. Regulation of hepatic fatty acid oxidation and ketone body production. Annual review of biochemistry. 1980;49:395–420. Epub 1980/01/01. doi: 10.1146/annurev.bi.49.070180.002143 6157353.

24. Thompson GN, Hsu BY, Pitt JJ, Treacy E, Stanley CA. Fasting hypoketotic coma in a child with deficiency of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase. The New England journal of medicine. 1997;337(17):1203–7. Epub 1997/10/23. doi: 10.1056/NEJM199710233371704 9337379.

25. Pitt JJ, Peters H, Boneh A, Yaplito-Lee J, Wieser S, Hinderhofer K, et al. Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase deficiency: urinary organic acid profiles and expanded spectrum of mutations. Journal of inherited metabolic disease. 2015;38(3):459–66. Epub 2014/12/17. doi: 10.1007/s10545-014-9801-9 25511235.

26. Ramos M, Menao S, Arnedo M, Puisac B, Gil-Rodriguez MC, Teresa-Rodrigo ME, et al. New case of mitochondrial HMG-CoA synthase deficiency. Functional analysis of eight mutations. European journal of medical genetics. 2013;56(8):411–5. Epub 2013/06/12. doi: 10.1016/j.ejmg.2013.05.008 23751782.

27. Bouchard L, Robert MF, Vinarov D, Stanley CA, Thompson GN, Morris A, et al. Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase deficiency: clinical course and description of causal mutations in two patients. Pediatric research. 2001;49(3):326–31. Epub 2001/03/03. doi: 10.1203/00006450-200103000-00005 11228257.

28. Aledo R, Mir C, Dalton RN, Turner C, Pie J, Hegardt FG, et al. Refining the diagnosis of mitochondrial HMG-CoA synthase deficiency. Journal of inherited metabolic disease. 2006;29(1):207–11. Epub 2006/04/08. doi: 10.1007/s10545-006-0214-2 16601895.

29. Adijanto J, Du J, Moffat C, Seifert EL, Hurle JB, Philp NJ. The retinal pigment epithelium utilizes fatty acids for ketogenesis. The Journal of biological chemistry. 2014;289(30):20570–82. Epub 2014/06/06. doi: 10.1074/jbc.M114.565457 24898254; PubMed Central PMCID: PMC4110270.

30. Wang Q, Zhou Y, Rychahou P, Fan TW, Lane AN, Weiss HL, et al. Ketogenesis contributes to intestinal cell differentiation. Cell death and differentiation. 2017;24(3):458–68. Epub 2016/12/10. doi: 10.1038/cdd.2016.142 27935584; PubMed Central PMCID: PMC5344206.

31. Royo T, Pedragosa MJ, Ayte J, Gil-Gomez G, Vilaro S, Hegardt FG. Testis and ovary express the gene for the ketogenic mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase. Journal of lipid research. 1993;34(6):867–74. Epub 1993/06/01. 8102635.

32. Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, et al. Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science (New York, NY). 2013;339(6116):211–4. Epub 2012/12/12. doi: 10.1126/science.1227166 23223453; PubMed Central PMCID: PMC3735349.

33. Hacker A, Capel B, Goodfellow P, Lovell-Badge R. Expression of Sry, the mouse sex determining gene. Development (Cambridge, England). 1995;121(6):1603–14. 7600978.

34. McFarlane L, Truong V, Palmer JS, Wilhelm D. Novel PCR assay for determining the genetic sex of mice. Sexual development: genetics, molecular biology, evolution, endocrinology, embryology, and pathology of sex determination and differentiation. 2013;7(4):207–11. Epub 2013/04/11. doi: 10.1159/000348677 23571295.

35. Hughes J, Dawson R, Tea M, McAninch D, Piltz S, Jackson D, et al. Knockout of the epilepsy gene Depdc5 in mice causes severe embryonic dysmorphology with hyperactivity of mTORC1 signalling. Sci Rep. 2017;7(1):12618. Epub 2017/10/05. doi: 10.1038/s41598-017-12574-2 28974734; PubMed Central PMCID: PMC5626732.

36. Eswarakumar VP, Monsonego-Ornan E, Pines M, Antonopoulou I, Morriss-Kay GM, Lonai P. The IIIc alternative of Fgfr2 is a positive regulator of bone formation. Development (Cambridge, England). 2002;129(16):3783–93. 12135917.

37. Wilhelm D, Hiramatsu R, Mizusaki H, Widjaja L, Combes AN, Kanai Y, et al. SOX9 regulates prostaglandin D synthase gene transcription in vivo to ensure testis development. The Journal of biological chemistry. 2007;282(14):10553–60. doi: 10.1074/jbc.M609578200 17277314.

38. Chen H, Palmer JS, Thiagarajan RD, Dinger ME, Lesieur E, Chiu H, et al. Identification of novel markers of mouse fetal ovary development. PloS one. 2012;7(7):e41683. Epub 2012/07/31. doi: 10.1371/journal.pone.0041683 22844512; PubMed Central PMCID: PMC3406020.

39. Wilhelm D, Martinson F, Bradford S, Wilson MJ, Combes AN, Beverdam A, et al. Sertoli cell differentiation is induced both cell-autonomously and through prostaglandin signaling during mammalian sex determination. Developmental biology. 2005;287(1):111–24. doi: 10.1016/j.ydbio.2005.08.039 16185683.

40. Wilhelm D, Washburn LL, Truong V, Fellous M, Eicher EM, Koopman P. Antagonism of the testis- and ovary-determining pathways during ovotestis development in mice. Mechanisms of development. 2009;126(5–6):324–36. doi: 10.1016/j.mod.2009.02.006 19269320; PubMed Central PMCID: PMC2680453.

41. Polanco JC, Wilhelm D, Davidson TL, Knight D, Koopman P. Sox10 gain-of-function causes XX sex reversal in mice: implications for human 22q-linked disorders of sex development. Human molecular genetics. 2010;19(3):506–16. Epub 2009/11/26. doi: 10.1093/hmg/ddp520 19933217.

42. Svingen T, Francois M, Wilhelm D, Koopman P. Three-dimensional imaging of Prox1-EGFP transgenic mouse gonads reveals divergent modes of lymphangiogenesis in the testis and ovary. PloS one. 2012;7(12):e52620. Epub 2013/01/04. doi: 10.1371/journal.pone.0052620 23285114; PubMed Central PMCID: PMC3527586.

43. Svingen T, Spiller CM, Kashimada K, Harley VR, Koopman P. Identification of suitable normalizing genes for quantitative real-time RT-PCR analysis of gene expression in fetal mouse gonads. Sexual development: genetics, molecular biology, evolution, endocrinology, embryology, and pathology of sex determination and differentiation. 2009;3(4):194–204. Epub 2009/09/16. doi: 10.1159/000228720 19752599.

44. van den Bergen JA, Miles DC, Sinclair AH, Western PS. Normalizing gene expression levels in mouse fetal germ cells. Biology of reproduction. 2009;81(2):362–70. Epub 2009/05/01. doi: 10.1095/biolreprod.109.076224 19403927; PubMed Central PMCID: PMC2849821.

45. Shapouri F, Saeidi S, de Iongh RU, Casagranda F, Western PS, McLaughlin EA, et al. Tob1 is expressed in developing and adult gonads and is associated with the P-body marker, Dcp2. Cell Tissue Res. 2016;364(2):443–51. Epub 2015/12/15. doi: 10.1007/s00441-015-2328-z 26662055.

46. Callier P, Calvel P, Matevossian A, Makrythanasis P, Bernard P, Kurosaka H, et al. Loss of function mutation in the palmitoyl-transferase HHAT leads to syndromic 46,XY disorder of sex development by impeding Hedgehog protein palmitoylation and signaling. PLoS genetics. 2014;10(5):e1004340. Epub 2014/05/03. doi: 10.1371/journal.pgen.1004340 24784881; PubMed Central PMCID: PMC4006744.

47. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nature methods. 2010;7(4):248–9. Epub 2010/04/01. doi: 10.1038/nmeth0410-248 20354512; PubMed Central PMCID: PMC2855889.

48. Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic acids research. 2012;40(Web Server issue):W452–7. Epub 2012/06/13. doi: 10.1093/nar/gks539 22689647; PubMed Central PMCID: PMC3394338.

49. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nature methods. 2014;11(4):361–2. Epub 2014/04/01. doi: 10.1038/nmeth.2890 24681721.

50. Shafqat N, Turnbull A, Zschocke J, Oppermann U, Yue WW. Crystal structures of human HMG-CoA synthase isoforms provide insights into inherited ketogenesis disorders and inhibitor design. Journal of molecular biology. 2010;398(4):497–506. Epub 2010/03/30. doi: 10.1016/j.jmb.2010.03.034 20346956.

51. Bullejos M, Koopman P. Spatially dynamic expression of Sry in mouse genital ridges. Developmental Dynamics. 2001;221:201–5. doi: 10.1002/dvdy.1134 11376487

52. Bessho Y, Sakata R, Komatsu S, Shiota K, Yamada S, Kageyama R. Dynamic expression and essential functions of Hes7 in somite segmentation. Genes & development. 2001;15(20):2642–7. Epub 2001/10/20. doi: 10.1101/gad.930601 11641270; PubMed Central PMCID: PMC312810.

53. Bagheri-Fam S, Bird AD, Zhao L, Ryan JM, Yong M, Wilhelm D, et al. Testis determination requires a specific FGFR2 isoform to repress FOXL2. Endocrinology. 2017. Epub 2017/09/25. doi: 10.1210/en.2017-00674 28938467.

54. Pearlman A, Loke J, Le Caignec C, White S, Chin L, Friedman A, et al. Mutations in MAP3K1 cause 46,XY disorders of sex development and implicate a common signal transduction pathway in human testis determination. American journal of human genetics. 2010;87(6):898–904. Epub 2010/12/07. doi: 10.1016/j.ajhg.2010.11.003 21129722; PubMed Central PMCID: PMC2997363.

55. Achermann JC, Ito M, Ito M, Hindmarsh PC, Jameson JL. A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nature genetics. 1999;22(2):125–6. Epub 1999/06/16. doi: 10.1038/9629 10369247.

56. Chou PY, Fasman GD. Empirical predictions of protein conformation. Annual review of biochemistry. 1978;47:251–76. Epub 1978/01/01. doi: 10.1146/annurev.bi.47.070178.001343 354496.

57. Aledo R, Zschocke J, Pie J, Mir C, Fiesel S, Mayatepek E, et al. Genetic basis of mitochondrial HMG-CoA synthase deficiency. Human genetics. 2001;109(1):19–23. Epub 2001/08/02. doi: 10.1007/s004390100554 11479731.

58. Zschocke J, Penzien JM, Bielen R, Casals N, Aledo R, Pie J, et al. The diagnosis of mitochondrial HMG-CoA synthase deficiency. The Journal of pediatrics. 2002;140(6):778–80. Epub 2002/06/20. doi: 10.1067/mpd.2002.123854 12072887.

59. Wolf NI, Rahman S, Clayton PT, Zschocke J. Mitochondrial HMG-CoA synthase deficiency: identification of two further patients carrying two novel mutations. European journal of pediatrics. 2003;162(4):279–80. Epub 2003/03/21. doi: 10.1007/s00431-002-1110-x 12647205.

60. Conboy E, Vairo F, Schultz M, Agre K, Ridsdale R, Deyle D, et al. Mitochondrial 3-Hydroxy-3-Methylglutaryl-CoA Synthase Deficiency: Unique Presenting Laboratory Values and a Review of Biochemical and Clinical Features. JIMD reports. 2018;40:63–9. Epub 2017/10/17. doi: 10.1007/8904_2017_59 29030856.

61. Puisac B, Marcos-Alcalde I, Hernandez-Marcos M, Tobajas Morlana P, Levtova A, Schwahn BC, et al. Human Mitochondrial HMG-CoA Synthase Deficiency: Role of Enzyme Dimerization Surface and Characterization of Three New Patients. International journal of molecular sciences. 2018;19(4). Epub 2018/03/31. doi: 10.3390/ijms19041010 29597274; PubMed Central PMCID: PMC5979369.

62. Bi W, Huang W, Whitworth DJ, Deng JM, Zhang Z, Behringer RR, et al. Haploinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(12):6698–703. Epub 2001/05/24. doi: 10.1073/pnas.111092198 11371614; PubMed Central PMCID: PMC34415.

63. Camats N, Fernandez-Cancio M, Audi L, Schaller A, Fluck CE. Broad phenotypes in heterozygous NR5A1 46,XY patients with a disorder of sex development: an oligogenic origin? Eur J Hum Genet. 2018;26(9):1329–38. Epub 2018/06/13. doi: 10.1038/s41431-018-0202-7 29891883; PubMed Central PMCID: PMC6117353.

64. Mazen I, Abdel-Hamid M, Mekkawy M, Bignon-Topalovic J, Boudjenah R, El Gammal M, et al. Identification of NR5A1 Mutations and Possible Digenic Inheritance in 46,XY Gonadal Dysgenesis. Sexual development: genetics, molecular biology, evolution, endocrinology, embryology, and pathology of sex determination and differentiation. 2016;10(3):147–51. Epub 2016/05/14. doi: 10.1159/000445983 27169744.

65. Robevska G, van den Bergen JA, Ohnesorg T, Eggers S, Hanna C, Hersmus R, et al. Functional characterization of novel NR5A1 variants reveals multiple complex roles in disorders of sex development. Human mutation. 2018;39(1):124–39. Epub 2017/10/14. doi: 10.1002/humu.23354 29027299; PubMed Central PMCID: PMC5765430.

66. Carre GA, Siggers P, Xipolita M, Brindle P, Lutz B, Wells S, et al. Loss of p300 and CBP disrupts histone acetylation at the mouse Sry promoter and causes XY gonadal sex reversal. Human molecular genetics. 2018;27(1):190–8. Epub 2017/11/18. doi: 10.1093/hmg/ddx398 29145650; PubMed Central PMCID: PMC5886154.


Článok vyšiel v časopise

PLOS One


2020 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#