The effect of strontium and silicon substituted hydroxyapatite electrochemical coatings on bone ingrowth and osseointegration of selective laser sintered porous metal implants
Autoři:
Aadil Mumith aff001; Vee San Cheong aff001; Paul Fromme aff002; Melanie J. Coathup aff001; Gordon W. Blunn aff001
Působiště autorů:
Institute of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedics Hospital, Stanmore, England, United Kingdom
aff001; Department of Mechanical Engineering, University College London, London, England, United Kingdom
aff002; Department of Automatic Controls and Systems Engineering & Insigneo Institute of Medicine, University of Sheffield, Sheffield, England, United Kingdom
aff003; College of Medicine, University of Central Florida, Orlando, Florida, United States of America
aff004; School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, England, United Kingdom
aff005
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0227232
Souhrn
Additive manufactured, porous bone implants have the potential to improve osseointegration and reduce failure rates of orthopaedic devices. Substantially porous implants are increasingly used in a number of orthopaedic applications. HA plasma spraying–a line of sight process—cannot coat the inner surfaces of substantially porous structures, whereas electrochemical deposition of calcium phosphate can fully coat the inner surfaces of porous implants for improved bioactivity, but the osseous response of different types of hydroxyapatite (HA) coatings with ionic substitutions has not been evaluated for implants in the same in vivo model. In this study, laser sintered Ti6Al4V implants with pore sizes of Ø 700 μm and Ø 1500 μm were electrochemically coated with HA, silicon-substituted HA (SiHA), and strontium-substituted HA (SrHA), and implanted in ovine femoral condylar defects. Implants were retrieved after 6 weeks and histological and histomorphometric evaluation were compared to electrochemically coated implants with uncoated and HA plasma sprayed controls. The HA, SiHA and SrHA coatings had Ca:P, Ca:(P+Si) and (Ca+Sr):P ratios of 1.53, 1.14 and 1.32 respectively. Electrochemically coated implants significantly promoted bone attachment to the implant surfaces of the inner pores and displayed improved osseointegration compared to uncoated scaffolds for both pore sizes (p<0.001), whereas bone ingrowth was restricted to the surface for HA plasma coated or uncoated implants. Electrochemically coated HA implants achieved the highest osseointegration, followed by SrHA coated implants, and both coatings exhibited significantly more bone growth than plasma sprayed groups (p≤0.01 for all 4 cases). SiHA had significantly more osseointegration when compared against the uncoated control, but no significant difference compared with other coatings. There was no significant difference in ingrowth or osseointegration between pore sizes, and the bone-implant-contact was significantly higher in the electrochemical HA than in SiHA or SrHA. These results suggest that osseointegration is insensitive to pore size, whereas surface modification through the presence of an osteoconductive coating plays an important role in improving osseointegration, which may be critically important for extensively porous implants.
Klíčová slova:
Strontium – Medical implants – Electrochemistry – Titanium implants – Bone development – Coatings – Osseointegration – Electrochemical deposition
Zdroje
1. Biemond JE, Hannink G, Verdonschot N, Buma P (2013) Bone ingrowth potential of electron beam and selective laser melting produced trabecular-like implant surfaces with and without a biomimetic coating. J Mater Sci Mater Med 24: 745–753. doi: 10.1007/s10856-012-4836-7 23254345
2. Taniguchi N, Fujibayashi S, Takemoto M, Sasaki K, Otsuki B, et al. (2016) Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Mater Sci Eng C Mater Biol Appl 59: 690–701. doi: 10.1016/j.msec.2015.10.069 26652423
3. Bandyopadhyay A, Espana F, Balla VK, Bose S, Ohgami Y, et al. (2010) Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants. Acta Biomater 6: 1640–1648. doi: 10.1016/j.actbio.2009.11.011 19913643
4. Lopez-Heredia MA, Sohier J, Gaillard C, Quillard S, Dorget M, et al. (2008) Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering. Biomaterials 29: 2608–2615. doi: 10.1016/j.biomaterials.2008.02.021 18358527
5. Balla VK, Bose S, Bandyopadhyay A (2007) Low stiffness porous Ti structures for load-bearing implants. Acta Biomater 3: 997–1006. doi: 10.1016/j.actbio.2007.03.008 17532277
6. Pattanayak DK, Fukuda A, Matsushita T, Takemoto M, Fujibayashi S, et al. (2011) Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments. Acta Biomater 7: 1398–1406. doi: 10.1016/j.actbio.2010.09.034 20883832
7. Balla VK, Bodhak S, Bose S, Bandyopadhyay A (2010) Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties. Acta Biomater 6: 3349–3359. doi: 10.1016/j.actbio.2010.01.046 20132912
8. Fromme P, Blunn GW, Aston WJ, Abdoola T, Koris J, et al. (2017) The Effect of Bone Growth onto Massive Prostheses Collars in Protecting the Implant from Fracture. Med Eng Phys 41: 19–25. doi: 10.1016/j.medengphy.2016.12.007 28087211
9. Simmons CA, Valiquette N, Pilliar RM (1999) Osseointegration of sintered porous-surfaced and plasma spray-coated implants: An animal model study of early postimplantation healing response and mechanical stability. J Biomed Mater Res 47: 127–138. doi: 10.1002/(sici)1097-4636(199911)47:2<127::aid-jbm3>3.0.co;2-c 10449624
10. Coathup MJ, Sanghrajka A, Aston WJ, Gikas PD, Pollock RC, et al. (2015) Hydroxyapatite-coated Collars Reduce Radiolucent Line Progression in Cemented Distal Femoral Bone Tumor Implants. Clin Orthop Res 473: 1505–1514. doi: 10.1007/s11999-014-4116-6 25634027
11. Cheong VS, Fromme P, Coathup MJ, Mumith A, Blunn GW (2020) Partial Bone Formation in Additive Manufactured Porous Implants Reduces Predicted Stress and Danger of Fatigue Failure. Ann Biomed Eng. doi: 10.1007/s10439-019-02369-z 31549330
12. Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay A (2018) Additive manufacturing of biomaterials. Prog Mater Sci 93: 45–111. doi: 10.1016/j.pmatsci.2017.08.003 31406390
13. Sing SL, An J, Yeong WY, Wiria FE (2016) Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs. J Orthop Res 34: 369–385. doi: 10.1002/jor.23075 26488900
14. Zhu SL, Yang XJ, Chen MF, Li CY, Cui ZD (2008) Effect of porous NiTi alloy on bone formation: A comparative investigation with bulk NiTi alloy for 15 weeks in vivo. Mater Sci Eng C 28: 1271–1275. doi: 10.1016/j.msec.2007.11.010
15. Van der Stok J, Van der Jagt OP, Amin Yavari S, De Haas MF, Waarsing JH, et al. (2013) Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects. J Orthop Res 31: 792–799. doi: 10.1002/jor.22293 23255164
16. de Wild M, Zimmermann S, Rüegg J, Schumacher R, Fleischmann T, et al. (2016) Influence of Microarchitecture on Osteoconduction and Mechanics of Porous Titanium Scaffolds Generated by Selective Laser Melting. 3D Print Addit Manuf 3: 142–151. doi: 10.1089/3dp.2016.0004
17. Mumith A, Coathup M, Chimutengwende-Gordon M, Aston W, Briggs T, et al. (2017) Augmenting the osseointegration of endoprostheses using laser-sintered porous collars: an in vivo study. Bone & Joint J 99-B: 276–282. doi: 10.1302/0301-620x.99b2.bjj-2016-0584.r1 28148673
18. Kanczler JM, Oreffo RO (2008) Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater 15: 100–114. doi: 10.22203/ecm.v015a08 18454418
19. Barrère F, van der Valk CM, Meijer G, Dalmeijer RAJ, de Groot K, et al. (2003) Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats. J Biomed Mater Res B Appl Biomater 67B: 655–665. doi: 10.1002/jbm.b.10057 14528464
20. Hacking SA, Tanzer M, Harvey EJ, Krygier JJ, Bobyn JD (2002) Relative contributions of chemistry and topography to the osseointegration of hydroxyapatite coatings. Clin Orthop Relat Res: 24–38. doi: 10.1097/00003086-200212000-00004 12461353
21. Kokubo T, Yamaguchi S (2015) Growth of Novel Ceramic Layers on Metals via Chemical and Heat Treatments for Inducing Various Biological Functions. Front Bioeng Biotechnol 3: 176. doi: 10.3389/fbioe.2015.00176 26579517
22. Hing KA, Revell PA, Smith N, Buckland T (2006) Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds. Biomaterials 27: 5014–5026. doi: 10.1016/j.biomaterials.2006.05.039 16790272
23. Patel N, Best SM, Bonfield W, Gibson IR, Hing KA, et al. (2002) A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. J Mater Sci Mater Med 13: 1199–1206. doi: 10.1023/a:1021114710076 15348666
24. Yang GL, Song LN, Jiang QH, Wang XX, Zhao SF, et al. (2012) Effect of strontium-substituted nanohydroxyapatite coating of porous implant surfaces on implant osseointegration in a rabbit model. Int J Oral Maxillofac Implants 27: 1332–1339 23189282
25. Yamada MO, Tohno Y, Tohno S, Utsumi M, Moriwake Y, et al. (2003) Silicon compatible with the height of human vertebral column. Biol Trace Elem Res 95: 113–121. doi: 10.1385/BTER:95:2:113 14645993
26. Honda M, Kikushima K, Kawanobe Y, Konishi T, Mizumoto M, et al. (2012) Enhanced early osteogenic differentiation by silicon-substituted hydroxyapatite ceramics fabricated via ultrasonic spray pyrolysis route. J Mater Sci Mater Med 23: 2923–2932. doi: 10.1007/s10856-012-4744-x 22890519
27. Botelho CM, Brooks RA, Best SM, Lopes MA, Santos JD, et al. (2006) Human osteoblast response to silicon-substituted hydroxyapatite. J Biomed Mater Res A 79: 723–730. doi: 10.1002/jbm.a.30806 16871624
28. Patel N, Brooks RA, Clarke MT, Lee PM, Rushton N, et al. (2005) In vivo assessment of hydroxyapatite and silicate-substituted hydroxyapatite granules using an ovine defect model. J Mater Sci Mater Med 16: 429–440. doi: 10.1007/s10856-005-6983-6 15875253
29. Bain SD, Jerome C, Shen V, Dupin-Roger I, Ammann P (2009) Strontium ranelate improves bone strength in ovariectomized rat by positively influencing bone resistance determinants. Osteoporos Int 20: 1417–1428. doi: 10.1007/s00198-008-0815-8 19096745
30. Cortet B (2011) Use of strontium as a treatment method for osteoporosis. Curr Osteoporos Rep 9: 25–30. doi: 10.1007/s11914-010-0042-z 21120641
31. Capuccini C, Torricelli P, Boanini E, Gazzano M, Giardino R, et al. (2009) Interaction of Sr-doped hydroxyapatite nanocrystals with osteoclast and osteoblast-like cells. J Biomed Mater Res A 89: 594–600. doi: 10.1002/jbm.a.31975 18437694
32. Qiu K, Zhao XJ, Wan CX, Zhao CS, Chen YW (2006) Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds. Biomaterials 27: 1277–1286. doi: 10.1016/j.biomaterials.2005.08.006 16143392
33. Capuccini C, Torricelli P, Sima F, Boanini E, Ristoscu C, et al. (2008) Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: in vitro osteoblast and osteoclast response. Acta Biomater 4: 1885–1893. doi: 10.1016/j.actbio.2008.05.005 18554996
34. Li Y, Li Q, Zhu S, Luo E, Li J, et al. (2010) The effect of strontium-substituted hydroxyapatite coating on implant fixation in ovariectomized rats. Biomaterials 31: 9006–9014. doi: 10.1016/j.biomaterials.2010.07.112 20800275
35. Surmenev RA, Shkarina S, Syromotina DS, Melnik EV, Shkarin R, et al. (2019) Characterization of biomimetic silicate- and strontium-containing hydroxyapatite microparticles embedded in biodegradable electrospun polycaprolactone scaffolds for bone regeneration. Eur Polym J 113: 67–77. doi: 10.1016/j.eurpolymj.2019.01.042
36. Xia W, Lindahl C, Persson C, Thomsen P, Lausmaa J, et al. (2010) Changes of surface composition and morphology after incorporation of ions into biomimetic apatite coating. J Biomater Nanobiotech 1: 7–16. doi: 10.4236/jbnb.2010.11002
37. Cheong VS, Fromme P, Mumith A, Coathup M, Blunn G (2018) Novel adaptive finite element algorithms to predict bone ingrowth in additive manufactured porous implants J Mech Behav Biomed Mater 87: 230–239. doi: 10.1016/j.jmbbm.2018.07.019 30086415
38. Huang Y, Han S, Pang X, Ding Q, Yan Y (2013) Electrodeposition of porous hydroxyapatite/calcium silicate composite coating on titanium for biomedical applications. App Surface Sci 271: 299–302. doi: 10.1016/j.apsusc.2013.01.187
39. Liang Y, Li H, Xu J, Li X, Qi M, et al. (2014) Morphology, composition, and bioactivity of strontium-doped brushite coatings deposited on titanium implants via electrochemical deposition. Int J Mol Sci 15: 9952–9962. doi: 10.3390/ijms15069952 24901526
40. de Groot K, Geesink R, Klein CP, Serekian P (1987) Plasma sprayed coatings of hydroxylapatite. J Biomed Mater Res 21: 1375–1381. doi: 10.1002/jbm.820211203 3429472
41. Wang BC, Lee TM, Chang E, Yang CY (1993) The shear strength and the failure mode of plasma-sprayed hydroxyapatite coating to bone: the effect of coating thickness. J Biomed Mater Res 27: 1315–1327. doi: 10.1002/jbm.820271012 8245046
42. Reznikov N, Boughton OR, Ghouse S, Weston AE, Collinson L, et al. (2019) Individual response variations in scaffold-guided bone regeneration are determined by independent strain- and injury-induced mechanisms. Biomaterials 194: 183–194. doi: 10.1016/j.biomaterials.2018.11.026 30611115
43. Shah FA, Thomsen P, Palmquist A (2019) Osseointegration and current interpretations of the bone-implant interface. Acta Biomater 84: 1–15. doi: 10.1016/j.actbio.2018.11.018 30445157
44. de Wild M, Schumacher R, Mayer K, Schkommodau E, Thoma D, et al. (2013) Bone regeneration by the osteoconductivity of porous titanium implants manufactured by selective laser melting: a histological and micro computed tomography study in the rabbit. Tissue Eng Part A 19: 2645–2654. doi: 10.1089/ten.TEA.2012.0753 23895118
45. Douard N, Detsch R, Chotard-Ghodsnia R, Damia C, Deisinger U, et al. (2011) Processing, physico-chemical characterisation and in vitro evaluation of silicon containing β-tricalcium phosphate ceramics. Mater Sci Eng C 31: 531–539. doi: 10.1016/j.msec.2010.11.008
46. Kim SR, Lee JH, Kim YT, Riu DH, Jung SJ, et al. (2003) Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors. Biomaterials 24: 1389–1398. doi: 10.1016/s0142-9612(02)00523-9 12527280
47. Arabnejad S, Burnett Johnston R, Pura JA, Singh B, Tanzer M, et al. (2016) High-strength porous biomaterials for bone replacement: A strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints. Acta Biomater 30: 345–356. doi: 10.1016/j.actbio.2015.10.048 26523335
48. Barrère F, van der Valk CM, Dalmeijer RAJ, Meijer G, van Blitterswijk CA, et al. (2003) Osteogenecity of octacalcium phosphate coatings applied on porous metal implants. J Biomech Mater Res A 66: 779–788. doi: 10.1002/jbm.a.10454 12926029
Článok vyšiel v časopise
PLOS One
2020 Číslo 1
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Psychometric validation of Czech version of the Sport Motivation Scale
- Comparison of Monocyte Distribution Width (MDW) and Procalcitonin for early recognition of sepsis
- Effects of supplemental creatine and guanidinoacetic acid on spatial memory and the brain of weaned Yucatan miniature pigs
- Accelerated sparsity based reconstruction of compressively sensed multichannel EEG signals