#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Use of Nanotrap particles for the capture and enrichment of Zika, chikungunya and dengue viruses in urine


Autoři: Shih-Chao Lin aff001;  Brian D. Carey aff001;  Victoria Callahan aff001;  Ji-Hyun Lee aff001;  Nicole Bracci aff001;  Anurag Patnaik aff002;  Amy K. Smith aff003;  Aarthi Narayanan aff001;  Benjamin Lepene aff002;  Kylene Kehn-Hall aff001
Působiště autorů: National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, United States of America aff001;  Ceres Nanosciences Inc., Manassas, VA, United States of America aff002;  School of Systems Biology and Computational Materials Science Center, George Mason University, Manassas, VA, United States of America aff003
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0227058

Souhrn

Nanotrap® (NT) particles are hydrogel microspheres developed for target analyte separation and discovery applications. NT particles consist of cross-linked N-isopropylacrylamide (NIPAm) copolymers that are functionalized with a variety of chemical affinity baits to enable broad-spectrum collection and retention of target proteins, nucleic acids, and pathogens. NT particles have been previously shown to capture and enrich arboviruses including Rift Valley fever and Venezuelan equine encephalitis viruses. Yet, there is still a need to enhance the detection ability for other re-emerging viruses such as Zika (ZIKV), chikungunya (CHIKV), and dengue (DENV) viruses. In this study, we exploited NT particles with different affinity baits, including cibacron blue, acrylic acid, and reactive red 120, to evaluate their capturing and enrichment capability for ZIKV, DENV and CHIKV in human fluids. Our results demonstrate that CN1030, a NT particle conjugated with reactive red 120, can recover between 8-16-fold greater genomic copies of ZIKV, CHIKV and DENV in virus spiked urine samples via RT-qPCR, superior to the other chemical baits. Also, we observed that CN1030 simultaneously enriched ZIKV, CHIKV and DENV in co-infection-based settings and could stabilize ZIKV, but not CHIKV infectivity in saliva spiked samples. CN1030 enriched viral detection at various viral concentrations, with significant enhancement observed at viral titers as low as 100 PFU/mL for ZIKV and 10 PFU/mL for CHIKV. The detection of ZIKV was further enhanced with NT particles by processing of larger volume urine samples. Furthermore, we developed a magnetic NT particle, CN3080, based on the same backbone of CN1030, and demonstrated that CN3080 could also capture and enrich ZIKV and CHIKV in a dose-dependent manner. Finally, in silico docking predictions support that the affinity between reactive red 120 and ZIKV or CHIKV envelope proteins appeared to be greater than acrylic acid. Overall, our data show that NT particles along with reactive red 120 can be utilized as a pre-processing technology for enhancement of detecting febrile-illness causing viruses.

Klíčová slova:

Viral pathogens – Urine – Dengue virus – Saliva – Zika virus – Chikungunya virus – Acrylics – Rift Valley fever virus


Zdroje

1. Luchini A, Geho DH, Bishop B, Tran D, Xia C, Dufour RL, et al. Smart hydrogel particles: biomarker harvesting: one-step affinity purification, size exclusion, and protection against degradation. Nano Lett. 2008;8(1):350–61. doi: 10.1021/nl072174l 18076201

2. Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev. 2008;60(15):1638–49. doi: 10.1016/j.addr.2008.08.002 18840488

3. Shafagati N, Patanarut A, Luchini A, Lundberg L, Bailey C, Petricoin E, 3rd, et al. The use of Nanotrap particles for biodefense and emerging infectious disease diagnostics. Pathog Dis. 2014;71(2):164–76. doi: 10.1111/2049-632X.12136 24449537

4. Patanarut A, Luchini A, Botterell PJ, Mohan A, Longo C, Vorster P, et al. Synthesis and characterization of hydrogel particles containing Cibacron Blue F3G-A. Colloids Surf A Physicochem Eng Asp. 2010;362(1–3):8–19. doi: 10.1016/j.colsurfa.2010.03.023 20871782

5. Jaworski E, Saifuddin M, Sampey G, Shafagati N, Van Duyne R, Iordanskiy S, et al. The use of Nanotrap particles technology in capturing HIV-1 virions and viral proteins from infected cells. PLoS One. 2014;9(5):e96778. doi: 10.1371/journal.pone.0096778 24820173

6. Shafagati N, Fite K, Patanarut A, Baer A, Pinkham C, An S, et al. Enhanced detection of respiratory pathogens with nanotrap particles. Virulence. 2016;7(7):756–69. doi: 10.1080/21505594.2016.1185585 27145085

7. Shafagati N, Lundberg L, Baer A, Patanarut A, Fite K, Lepene B, et al. The use of Nanotrap particles in the enhanced detection of Rift Valley fever virus nucleoprotein. PLoS One. 2015;10(5):e0128215. doi: 10.1371/journal.pone.0128215 26020252

8. Shafagati N, Narayanan A, Baer A, Fite K, Pinkham C, Bailey C, et al. The use of NanoTrap particles as a sample enrichment method to enhance the detection of Rift Valley Fever Virus. PLoS Negl Trop Dis. 2013;7(7):e2296. doi: 10.1371/journal.pntd.0002296 23861988

9. Paixao ES, Teixeira MG, Rodrigues LC. Zika, chikungunya and dengue: the causes and threats of new and re-emerging arboviral diseases. BMJ Glob Health. 2018;3(Suppl 1):e000530. doi: 10.1136/bmjgh-2017-000530 29435366

10. Prevention CfDCa. Zika virus testing guidance: symptomatic non-pregnant individuals with possible zika virus exposure 2018 [Available from: https://www.cdc.gov/zika/pdfs/testing-algorithm-symptomatic-nonpregnant.pdf.

11. Hirayama T, Mizuno Y, Takeshita N, Kotaki A, Tajima S, Omatsu T, et al. Detection of dengue virus genome in urine by real-time reverse transcriptase PCR: a laboratory diagnostic method useful after disappearance of the genome in serum. J Clin Microbiol. 2012;50(6):2047–52. doi: 10.1128/JCM.06557-11 22442323

12. Musso D, Teissier A, Rouault E, Teururai S, de Pina JJ, Nhan TX. Detection of chikungunya virus in saliva and urine. Virol J. 2016;13:102. doi: 10.1186/s12985-016-0556-9 27306056

13. Gourinat AC, O'Connor O, Calvez E, Goarant C, Dupont-Rouzeyrol M. Detection of Zika virus in urine. Emerg Infect Dis. 2015;21(1):84–6. doi: 10.3201/eid2101.140894 25530324

14. Gorchakov R, Wang E, Leal G, Forrester NL, Plante K, Rossi SL, et al. Attenuation of Chikungunya virus vaccine strain 181/clone 25 is determined by two amino acid substitutions in the E2 envelope glycoprotein. J Virol. 2012;86(11):6084–96. doi: 10.1128/JVI.06449-11 22457519

15. Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, et al. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis. 2008;14(8):1232–9. doi: 10.3201/eid1408.080287 18680646

16. Waggoner JJ, Ballesteros G, Gresh L, Mohamed-Hadley A, Tellez Y, Sahoo MK, et al. Clinical evaluation of a single-reaction real-time RT-PCR for pan-dengue and chikungunya virus detection. J Clin Virol. 2016;78:57–61. doi: 10.1016/j.jcv.2016.01.007 26991052

17. Lin SC, Chen MC, Liu S, Callahan VM, Bracci NR, Lehman CW, et al. Phloretin inhibits Zika virus infection by interfering with cellular glucose utilisation. Int J Antimicrob Agents. 2019;54(1):80–4. doi: 10.1016/j.ijantimicag.2019.03.017 30930299

18. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–91. doi: 10.1002/jcc.21256 19399780

19. Grosdidier A, Zoete V, Michielin O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011;39(Web Server issue):W270–7. doi: 10.1093/nar/gkr366 21624888

20. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12. doi: 10.1002/jcc.20084 15264254

21. Salam N, Mustafa S, Hafiz A, Chaudhary AA, Deeba F, Parveen S. Global prevalence and distribution of coinfection of malaria, dengue and chikungunya: a systematic review. BMC Public Health. 2018;18(1):710. doi: 10.1186/s12889-018-5626-z 29879935

22. Suwanmanee S, Surasombatpattana P, Soonthornworasiri N, Hamel R, Maneekan P, Misse D, et al. Monitoring arbovirus in Thailand: Surveillance of dengue, chikungunya and zika virus, with a focus on coinfections. Acta Trop. 2018;188:244–50. doi: 10.1016/j.actatropica.2018.09.012 30248317

23. Musso D, Roche C, Nhan TX, Robin E, Teissier A, Cao-Lormeau VM. Detection of Zika virus in saliva. J Clin Virol. 2015;68:53–5. doi: 10.1016/j.jcv.2015.04.021 26071336

24. Voss JE, Vaney MC, Duquerroy S, Vonrhein C, Girard-Blanc C, Crublet E, et al. Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature. 2010;468(7324):709–12. doi: 10.1038/nature09555 21124458

25. Dai L, Song J, Lu X, Deng YQ, Musyoki AM, Cheng H, et al. Structures of the Zika Virus Envelope Protein and Its Complex with a Flavivirus Broadly Protective Antibody. Cell Host Microbe. 2016;19(5):696–704. doi: 10.1016/j.chom.2016.04.013 27158114

26. Barzon L, Pacenti M, Berto A, Sinigaglia A, Franchin E, Lavezzo E, et al. Isolation of infectious Zika virus from saliva and prolonged viral RNA shedding in a traveller returning from the Dominican Republic to Italy, January 2016. Euro Surveill. 2016;21(10):30159. doi: 10.2807/1560-7917.ES.2016.21.10.30159 26987769

27. Khurshid Z, Zafar M, Khan E, Mali M, Latif M. Human saliva can be a diagnostic tool for Zika virus detection. J Infect Public Heal. 2019;12(5):601–4.

28. Judice CC, Tan JJL, Parise PL, Kam YW, Milanez GP, Leite JA, et al. Efficient detection of Zika virus RNA in patients' blood from the 2016 outbreak in Campinas, Brazil. Sci Rep. 2018;8(1):4012. doi: 10.1038/s41598-018-22159-2 29507368

29. Musso D, Teissier A, Rouault E, Teururai S, de Pina JJ, Nhan TX. Detection of chikungunya virus in saliva and urine (vol 13, 102, 2016). Virol J. 2016;13.

30. Bandeira AC, Campos GS, Diniz Rocha VF, de Freitas Souza BS, Pereira Soares MB, Oliveira AA, et al. Prolonged shedding of Chikungunya virus in semen and urine: A new perspective for diagnosis and implications for transmission. IDCases. 2016;6:100–3. doi: 10.1016/j.idcr.2016.10.007 27882301

31. Saiz JC, Vazquez-Calvo A, Blazquez AB, Merino-Ramos T, Escribano-Romero E, Martin-Acebes MA. Zika Virus: the Latest Newcomer. Front Microbiol. 2016;7:496. doi: 10.3389/fmicb.2016.00496 27148186

32. Smith TJ, Brandt WE, Swanson JL, McCown JM, Buescher EL. Physical and biological properties of dengue-2 virus and associated antigens. J Virol. 1970;5(4):524–32. 4195055

33. Ganesan VK, Duan B, Reid SP. Chikungunya Virus: Pathophysiology, Mechanism, and Modeling. Viruses. 2017;9(12).

34. Paul J, Kadam AA, Govindwar SP, Kumar P, Varshney L. An insight into the influence of low dose irradiation pretreatment on the microbial decolouration and degradation of Reactive Red-120 dye. Chemosphere. 2013;90(4):1348–58. doi: 10.1016/j.chemosphere.2012.07.049 22980957

35. Rahman N, Nasir M. Application of Box-Behnken design and desirability function in the optimization of Cd(II) removal from aqueous solution using poly(o-phenylenediamine)/hydrous zirconium oxide composite: equilibrium modeling, kinetic and thermodynamic studies. Environ Sci Pollut Res Int. 2018;25(26):26114–34. doi: 10.1007/s11356-018-2566-1 29971743

36. Kanbara A, Miura Y, Hyogo H, Chayama K, Seyama I. Effect of urine pH changed by dietary intervention on uric acid clearance mechanism of pH-dependent excretion of urinary uric acid. Nutr J. 2012;11:39. doi: 10.1186/1475-2891-11-39 22676161

37. Prevention CfDCa. Estimated potential range of Aedes aegypti and Aedes albopictus in the United States 2017 [Available from: https://www.cdc.gov/zika/vector/range.html.

38. Vogels CBF, Ruckert C, Cavany SM, Perkins TA, Ebel GD, Grubaugh ND. Arbovirus coinfection and co-transmission: A neglected public health concern? PLoS Biol. 2019;17(1):e3000130. doi: 10.1371/journal.pbio.3000130 30668574


Článok vyšiel v časopise

PLOS One


2020 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#