#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Quo vadis Pantanal? Expected precipitation extremes and drought dynamics from changing sea surface temperature


Autoři: Dirk Thielen aff001;  Karl-Ludwig Schuchmann aff002;  Paolo Ramoni-Perazzi aff006;  Marco Marquez aff001;  Wilmer Rojas aff001;  Jose Isrrael Quintero aff001;  Marinêz Isaac Marques aff002
Působiště autorů: Laboratory of Landscape Ecology and Climate, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela aff001;  National Institute for Science and Technology in Wetlands (INAU), Federal University of Mato Grosso, Computational Bioacoustics Research Unit (CO.BRA), Cuiabá, Mato Grosso, Brazil aff002;  Postgraduate Program in Zoology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil aff003;  Zoological Research Museum A. Koenig, Department of Vertebrates, Bonn, Germany aff004;  University of Bonn, Faculty of Mathematics and Natural Sciences, Bonn, Germany aff005;  Federal University of Lavras, Lavras, Minas Gerais, Brazil aff006;  Center of Model Simulation, University of Los Andes, Mérida, Venezuela aff007;  Postgraduate Program in Ecology and Biodiversity Conservation, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil aff008
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0227437

Souhrn

Climate change poses a critical threat to the Pantanal, the largest wetland in the world. Models indicate an increase in the frequency of extreme precipitation events and extended periods of drought. These changes can amplify consequences for Pantanal’s ecological functioning, which has already experienced intensive human modification of its hydrological system and environmental health. The present study analyzed the spatial and temporal dynamics of rainfall and resulting extremes in the Brazilian area of the Upper Paraguay River Basin (UPRB) along with a co-evaluation of the global Sea Surface Temperature data (SST). The predicted results indicate that wet extreme precipitation events will become more frequent in the highlands, while severe and prolonged droughts triggered by warming SSTs in the Northern Hemisphere (North Atlantic and North Pacific oceans) will affect the Pantanal. The linear relations between precipitation with SST of very specific oceanic regions and even from specific oceanic indexes obtained in the present study significantly improve the forecasting capacity, mainly from a resulting reduction to two months of the lead-time between SST warming to concomitant precipitation impacts, and by explaining 80% of Pantanal´s precipitation variation from major oceanic indexes (e.g., ENSO, PDO, NAO, ATL3). Current SST trends will result in inter- and intra-annual flooding dynamic alterations, drastically affecting the Pantanal ecosystem functioning, with consequences for wildlife diversity and distribution. Regarding the foreseeable global climate and land use change scenarios, the results from the present study provide solid evidence that can be used at different decision-making levels (from local to global) for identifying the most appropriate management practices and effectively achieving sustainability of the anthropic activity occurring in the Pantanal.

Klíčová slova:

Flooding – Meteorology – Rain – El Niño-Southern Oscillation – Drought – Ocean temperature – Surface temperature – Ecosystem functioning


Zdroje

1. Assine ML, Merino ER, Pupim FN, Warren LV, Guerreiro RL, McGlue MM. Geology and Geomorphology of the Pantanal Basin. In: Bergier I, Assine ML, editors. Dynamics of the Pantanal Wetland in South America. Heidelberg, Germany: Springer International Publishing; 2015. pp. 23–50. doi: 10.1007/698_2015_349

2. Bravo JM, Allasia D, Paz AR, Collischonn W, Tucci CEM. Coupled hydrologic-hydraulic modeling of the Upper Paraguay River Basin. J Hydrol Eng. 2012; 17: 635–646. doi: 10.1061/(ASCE)HE.1943-5584.0000494

3. Alho CJR, Lacher TE Jr, Gonçalves HC. Environmental Degradation in the Pantanal Ecosystem. BioScience. 1988; 38: 164–171. doi: 10.2307/1310449

4. Mittermeier RA, Gusmão Câmara I, Tereza M, Padua J, Blanck J. Conservation in the Pantanal of Brazil. Oryx. 1990; 24: 103–112. doi: 10.1017/S003060530003475X

5. Por FD. The Pantanal of Mato Grosso (Brazil). World's Largest Wetlands. Dordrecht: Kluwer Academic Publishers; 1995.

6. Girard P. The Pantaneiros, perceptions and conflicts about the environment in the Pantanal in Tropical wetland management. In: Ioris AAR, editor. Tropical Wetland Management: The South-American Pantanal and International Experience: London, UK; Ashgate Publishing; 2012.

7. Bergier I, Assine ML, McGlue MM, Alho CJR, Silva A, Guerreiro RL, et al. Amazon rainforest modulation of water security in the Pantanal wetland. Sci Total Environ. 2017; 619–620: 1116–1125. doi: 10.1016/j.scitotenv.2017.11.163 29734590

8. Marengo JA, Alves LM, Torres RR. Regional climate change scenarios in the Brazilian Pantanal watershed. Clim Res. 2015; 68: 201–213. doi: 10.3354/cr01324

9. Marengo JA, Oliveira GS, Alves LM. Climate Change Scenarios in the Pantanal. In: Bergier I, Assine ML, editors. Dynamics of the Pantanal Wetland in South America. Heidelberg, Germany: Springer International Publishing; 2015. pp. 227–238. doi: 10.1007/698_2015_357

10. Alho CJR, Sabino J. Seasonal Pantanal flood pulse: Implications for biodiversity conservation–A Review. Oecol Aust. 2012; 16: 958–978. doi: 10.4257/oeco.2012.1604.17

11. Fortes CF, Nunes-da-Cunha C, Rosa SA, Paixao E, Junk WJ, Schöngart J. Dendrochronological records of a pioneer tree species containing ENSO signal in the Pantanal, Brazil. Braz J Bot. 2018; 41: 167–174. doi: 10.1007/s40415-017-0434-8

12. Junk W, Bayley PB, Spark RE. The flood pulse concept in river-floodplain systems. Proc. Int. Large River Symposium (LARS). 1989; 106: 110–127.

13. Junk WJ, Nunes-da-Cunha C. The Pantanal: a brief review of its ecology, biodiversity, and protection status. In: Finlayson CM, Everard M, Irvine K, McInnes R, Middleton B, van Dam A, et al. editors. The Wetland Book II. Springer Science+Business Media B.V., part of Springer Nature; 2018.

14. Bergier I. Effects of highland land-use over lowlands of the Brazilian Pantanal. Sci Total Environ. 2013; 463–464: 1060–1066. doi: 10.1016/j.scitotenv.2013.06.036 23891998

15. Rossotto Ioris AA, Irigaray CT, Girard P. Institutional responses to climate change: opportunities and barriers for adaptation in the Pantanal and the Upper Paraguay River Basin. Clim Change. 2014; 127: 139–151. doi: 10.1007/s10584-014-1134-z

16. Alho CJR, Silva JSV. Effects of severe floods and droughts on wildlife of the Pantanal wetland (Brazil)—A review. Animals. 2012; 2: 591–610. doi: 10.3390/ani2040591 26487165

17. Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S, et al. Global flood risk under climate change. Nat Clim Change. 2013; 3: 816–821. doi: 10.1038/NCLIMATE1911

18. IPCC (Intergovernmental Panel on Climate Change). Climate change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK et al., editors. Cambridge, United Kingdom and New York, NY, USA; Cambridge University Press. 2013.

19. Bravo JM, Collischonn W, Rolim da Paz A, Allasia D, Domecq F. Impact of projected climate change on hydrologic regime of the Upper Paraguay River basin. Clim Change. 2014; 127: 27–41. doi: 10.1007/s10584-013-0816-2

20. Araujo AGJ, Obregón GO, Monteiro GS, Silva AMV, Soriano LTB, Padovani C, et al. Relationships between variability in precipitation, river levels, and beef cattle production in the Brazilian Pantanal. Wetl Ecol Manag. 2018; 26: 829–848. doi: 10.1007/s11273-018-9612-0

21. Andreoli RV, Souza RAF, Kayano M, Candido LA. Seasonal anomalous rainfall in the central and eastern Amazon and associated anomalous oceanic and atmospheric patterns. Int J Climatol. 2012; 32: 1193–1205. doi: 10.1002/joc.2345

22. Marengo JA, Ambrizzi T, Rocha RP, Alves LM, Cuadra SV, Valverde MC, et al. Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models. Clim Dynam. 2010; 35: 1073–1097. doi: 10.1007/s00382-009-0721-6

23. PBMC (Painel Brasileiro de Mudanças Climáticas). Contribuição do Grupo de Trabalho 1 do Painel Brasileiro de Mudanças Climáticas ao Primeiro Relatório da Avaliação Nacional sobre Mudanças Climáticas. Sumário Executivo GT1. Rio de Janeiro, Brazil. 2013. 24p.

24. Marengo JA. Long-term trends and cycles in the hydrometeorology of the Amazon basin since the late 1920s. Hydrol Process. 2009; 23: 3236–3244. doi: 10.1002/hyp.7396

25. Ronchail J, Cochonneau G, Molinier M, Guyot J-L, Chaves AGM, Guimãraes V, et al. Interannual rainfall variability in the Amazon basin and Sea-Surface Temperatures in the equatorial Pacific and the tropical Atlantic oceans. Int J Climatol. 2002; 22: 1663–1686. doi: 10.1002/joc.81

26. Ronchail J, Bourrel L, Cochonneau G, Vauchel P, Phillips L, Castro A, et al. Inundations in the Mamoré basin (south-western Amazon-Bolivia) and sea-surface temperature in the Pacific and Atlantic Oceans. J Hydrol. 2005; 302: 223–238. doi: 10.1016/j.jhydrol.2004.07.005

27. Allasia Piccilli DG. Avaliação da Previsão Hidroclimática no Alto Paraguai. Doctorate Thesis. Universidade Federal do Rio Grande do Sul. 2007. Available from: https://lume.ufrgs.br/handle/10183/13826

28. García NO, Mechoso CR. Variability in the discharge of South American rivers and in climate. Hydrolog Sci J. 2005; 50: 459–478. doi: 10.1623/hysj.50.3.459.65030

29. Marengo JA. Interannual variability of surface climate in the Amazon Basin. Int J Climatol. 1992; 12: 853–863. doi: 10.1002/joc.3370120808

30. Cherchi A, Carril AF, Menéndez CG, Zamboni L. La Plata basin precipitation variability in spring: role of remote SST forcing as simulated by GCM experiments. Clim Dynam. 2014; 42: 219–236. doi: 10.1007/s00382-013-1768-y

31. Mechoso CR, Robertson AW, Ropelewski CF, Grimm AM. The American monsoon systems. In: Chang C-P, Wang B, Lau N-CG, editors. The Global Monsoon System: Research and Forecast. Geneva, Switzerland: World Meteorological Organization; 2005. pp. 197–206.

32. Allasia Piccilli DG, Da Silva BC, Collischonn W, Morelli Tucci CE. Large basin simulation experience in South America. Predictions in Ungauged Basins: Promise and Progress, Proc. Symp. 7th IAHS Scientific Assembly; IAHS Publish; 2006; pp. 360–370.

33. Erwin KL. Wetlands and global climate change: the role of wetland restoration in a changing world. Wetl Ecol Manag. 2009; 17: 71–84, doi: 10.1007/s11273-008-9119-1

34. Junk WJ. Current state of knowledge regarding South America wetlands and their future under global climate change. Aquat Sci. 2013; 75: 113–131, doi: 10.1007/s00027-012-0253-8

35. Esquivel-Muelbert A, Baker TR, Dexter KG, Lewis SL, Steege HT, Lopez-Gonzalez G, et al. Seasonal drought limits tree species across the Neotropics. Ecography. 2017; 40: 618–629. doi: 10.1111/ecog.01904

36. Bunker DE, Carson WP. Drought stress and tropical forest woody seedlings: effect on community structure and composition. J Ecol. 2005; 93: 794–806. doi: 10.1111/j.1365-2745.2005.01019.x

37. Engelbrecht BMJ, Comita LS, Condit R, Kursar TA, Tyree MT, Turner BL, et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature. 2007; 447: 80–82, doi: 10.1038/nature05747 17476266

38. Silva JDSV Abdon MDM. Delimitação do Pantanal brasileiro e suas sub-regiões. Pesqui Agropecu Bras. 1998; 33: 1703–1711.

39. Lehner B, Grill G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol Process. 2013; 27: 2171–2186. doi: 10.1002/hyp.9740

40. Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci Data. 2015; 66: 1–21. doi: 10.1038/sdata

41. Beck HE, Vergopolan N, Pan M, Levizzani V, Dijk AIJM, Weedon G, et al. Global-scale evaluation of 23 precipitation datasets using gauge observations and hydrological modeling. Hydrol Earth Syst Sci. 2017; 21: 6201–6217. doi: 10.5194/hess-2017-5508

42. Pita López MF. Un nouvel indice de sécheresse pour les domaines méditerranéens. Application au bassin du Guadalquivir (sudouest de l'Espagne). Publ I Assoc Int Clim. 2001; 13: 225–233.

43. McKee TB, Doesken NJ, Kleist J. The relationship of drought frequency and duration to time scales. Proc. 8th Conf. Appl. Clim. 1993.

44. Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res Adv Access. 2015; 43: W566–W570. doi: 10.1093/nar/gkv468 25969447

45. Paredes-Trejo FJ, Barbosa HA, Lakshmi-Kumar TV. Validating CHIRPS-based satellite precipitation estimates in Northeast Brazil. J Arid Environ. 2017; 139: 26–40. doi: 10.1016/j.jaridenv.2016.12.009

46. Valeriano MDM, Salvi LL, Aragão JRL. Relações entre a distribuição da precipitação e o relevo da bacia do alto Paraguai. Anais 4º Simp. Geotecnologias no Pantanal. 2012; pp. 289–298.

47. Oliver JE. Encyclopedia of World Climatology. Fairbridge RW, Rampino M, editors. Dordrecht: Springer. 2005.

48. Marcuzzo FFN, Faria TG, Cardoso MRD, Melo DCR. Chuvas no Pantanal brasileiro: análise histórica e tendência futura. Proc. 3º Simp. Geotecnologias no Pantanal. 2010; pp. 170–180.

49. Marcuzzo FFN, Rocha HM, Melo DCR. Mapeamento da precipitação pluviométrica no bioma Pantanal do estado do Mato Grosso. Geoambiente on-line. 2011; 16: 66–84. doi: 10.5216/revgeoamb.v0i16.26021

50. Marengo JA. Water and Climate Change. Estudos Avançados. 2008; 22: 83–96.

51. Gloor M, Brienen RJW, Galbraith D, Feldpausch TR, Schöngart J, Guyot J-L, et al. Intensification of the Amazon hydrological cycle over the last two decades. Geophys Res Lett. 2013; 40: 1729–1733. doi: 10.1002/grl.50377

52. Espinoza JC, Sörensson AA, Ronchail J, Molina-Carpio J, Segura H, Gutierrez-Cori O, et al. Regional hydro-climatic changes in the Southern Amazon Basin (Upper Madeira Basin) during the 1982–2017 period. J Hydrol Reg Stud. 2019; 26: 100637. doi: 10.1016/j.ejrh.2019.100637

53. Liebmann B, Mechoso C. The South American Monsoon System. In: (2nd Edition). Editor: Chang C-P, Wang B, Lau N-CG, editors. The Global Monsoon System: Research and Forecast. World Scientific Publishing Co. 2011. pp. 137–157.

54. Bergier I. River level sensitivity to SOI and NAO in Pantanal and Amazonia. Anais 3º Simpósio de Geotecnologias no Pantanal. 2010. doi: 10.13140/2.1.4754.0809

55. Jones C, Carvalho LMV. Climate change in the South American Monsoon System: Present climate and CMIP5 projections. J Clim. 2013; 26: 6660–6678. doi: 10.1175/JCLI-D-12-00412.1

56. Skansi MM, Brunet M, Sigró J, Aguilar E, Groening JAA, Bentancur OJ, et al. Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Glob. Planet. Change. 2013; 100: 295–307. doi: 10.1016/j.gloplacha.2012.11.004

57. Batista Silva C, Siqueira Silva ME, Ambrizzi T. Climatic variability of river outflow in the Pantanal region and the influence of sea surface temperature. Theor Appl Clim. 2016; doi: 10.1007/s00704-016-1760-7

58. Keenlyside N, Latif M, Jungclaus J, Kornblueh L, Roeckner E. Advancing decadal-scale climate prediction in the North Atlantic sector. Nature. 2008; 453: 84–88. doi: 10.1038/nature06921 18451859

59. Torralba V, Rodríguez-Fonseca B, Mohino E, Losada T. The non-stationary influence of the Atlantic and Pacific Niños on North Eastern South American rainfall. Front Earth Sci. 2015; 3: 1–10. doi: 10.3389/feart.2015.00055

60. Nobre AD. The Future Climate of Amazonia—Scientific Assessment Report. 1st ed. CCST-INPE-INPA-ARA: São José dos Campos; 2014.

61. Krepper CM, Zucarelli GV. Climatology of water excesses and shortages in the La Plata Basin. Theor Appl Clim. 2010; 102: 13–27. doi: 10.1007/s00704-009-0234-6

62. Doyle ME, Barros VR. Midsummer Low-Level Circulation and Precipitation in Subtropical South America and Related Sea Surface Temperature Anomalies in the South Atlantic. J Clim. 2002; 15: 3394–3410. doi: 10.1175/1520-0442(2002)015<3394:MLLCAP>2.0.CO;2

63. Robertson AW, Mechoso CR. Interannual and interdecadal variability of the South Atlantic Convergence Zone. Mon Weather Rev. 2000; 128: 2947–2957. doi: 10.1175/1520-0493(2000)128<2947:IAIVOT>2.0.CO;2

64. Clarke RT. The relation between interannual storage and frequency of droughts, with particular reference to the Pantanal Wetland of South America. Geophys Res Lett. 2005; 32: L05402. doi: 10.1029/2004GL021742

65. Taschetto AS, Ambrizzi T. Can Indian Ocean SST anomalies influence South American rainfall? Clim Dyn. 2012; 38: 1615–1628. doi: 10.1007/s00382-011-1165-3

66. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T. A dipole mode in the tropical Indian Ocean. Nature 1999; 401:360–363. doi: 10.1038/43854 16862108

67. Chan SC, Behera SK, Yamagata T. Indian Ocean Dipole influence on South American rainfall. Geophys Res Lett. 2008; 35: L14S12. doi: 10.1029/2008GL034204

68. Behera SK, Luo J-J, Yamagata T. The Unusual IOD Event of 2007. Geophys. Res. Lett. 2008; 35: L14S11. doi: 10.1029/2008GL034122

69. Annamalai H, Xie SP, McCreary JP, Murtugudde R. Impact of Indian Ocean sea surface temperature on developing El Niño. J Clim. 2005; 18, 302–319.

70. Izumo T, Montegut CDB, Luo J-J, Behera SK, Masson S, Yamagata T. The role of the western Arabian Sea upwelling in Indian Monsoon rainfall variability. J Clim. 2008; 21, 5603–5623.

71. Deser C, Phillips AS, Tomas RA, Okumura YM, Alexander MA, Capotondi A, et al. ENSO and Pacific Decadal Variability in the Community Climate System Model Version 4. J Clim. 2012; 25: 2622–2651. doi: 10.1175/JCLI-D-11-00301.1

72. Deser C, Simpson IR, McKinnon KA, Phillips AS. The Northern Hemisphere extra-tropical atmospheric circulation response to ENSO: How well do we know it and how do we evaluate models accordingly? J Clim. 2017; 30: 5059–5082. doi: 10.1175/JCLI-D-16-0844.1

73. Nobre P, Marengo JA, Cavalcanti IFA, Obregon G, Barros V, Camilloni I, et al. Seasonal-to-decadal predictability and prediction of South American climate. J Clim. 2006; 19: 5988–6004.

74. Robertson AW, Mechoso CR. Interannual and Decadal Cycles in River Flows of Southeastern South America. J Clim. 1998; 11: 2570–2581. doi: 10.1175/1520-0442(1998)011<2570:IADCIR>2.0.CO;2

75. Zhou J, Lau K-M. Principal modes of interannual and decadal variability of summer rainfall over South America. Int J Clim. 2001; 21: 1623–1644. doi: 10.1002/joc.700

76. Paegle JN, Mo KC. Linkages between summer rainfall variability over South America and Sea Surface Temperature Anomalies. J Clim. 2002; 15: 1389–1407. doi: 10.1175/1520-0442(2002)015<1389:LBSRVO>2.0.CO;2

77. Novello VF, Cruz FW, Vuille M, Stríkis NM, Edwards RL, Cheng H, et al. A high-resolution history of the South American Monsoon from Last Glacial Maximum to the Holocene. Sci Rep. 2017; 7: 44267. doi: 10.1038/srep44267 28281650

78. Baker PA, Fritz SC. Nature and causes of Quaternary climate variation of tropical South America. Quaternary Sci Rev. 2015; 124: 31–47. doi: 10.1016/j.quascirev.2015.06.011

79. Schwerdtfeger J, Silveira SWG, Zeilhofer P, Weiler M. Coupled ground- and space-based assessment of regional inundation dynamics to assess impact of local and upstream changes on evaporation in tropical wetlands. Remote Sens. 2015; 7: 9769–9795. doi: 10.3390/rs70809769


Článok vyšiel v časopise

PLOS One


2020 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#