Regional versus local wind speed and direction at a narrow beach with a high and steep foredune
Autoři:
Winnie de Winter aff001; Jasper Donker aff001; Geert Sterk aff001; Job van Beem aff001; Gerben Ruessink aff001
Působiště autorů:
Department of Physical Geography, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
aff001
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0226983
Souhrn
Dune growth and post-storm recovery of foredune systems is predominantly determined by the aeolian sand transport through the beach-dune interface. Potential sand transport rates, estimated with empirical transport equations using regionally representative wind conditions, are generally too high. This positive bias might be, at least partly, due to the effect of the beach and foredune topography on the regional airflow. Here, we investigate the relation between local (on the beach) and regional wind velocities and direction in front of the high (∼22 m) and steep (∼1:2.5) foredune partially vegetated with Marram grass at Egmond aan Zee, The Netherlands based on a dataset with a large variety in wind speeds spanning over all onshore wind directions. We observed that local 10-minute averaged wind speed and direction can differ from the regional wind conditions (here measured 15 km away from the study site) depending on the regional approach angle of the wind. The ratio of local over regional wind speed is smallest (∼0.39) when the wind direction is dune-normal. This ratio increases with increasing obliquity towards almost 1 for alongshore winds. Wind steering only happens at the dune foot and is the largest (∼13°) with oblique approaching winds of 40° from the dune normal. Perpendicular and nearly alongshore winds do not show any steering near the dune foot. The use of local rather than regional wind conditions in a potential transport equation reduces the predicted annual supply from 86 to 32 m3/m/y, substantially closer to the measured deposition of 15 m3/m/y. The drop in velocity was more important to the reduction in predicted supply than the alongshore steering.
Klíčová slova:
Embryos – Velocity – Netherlands – Wind – Feet – Beaches – Steering – Weather stations
Zdroje
1. Hesp P. Foredunes and blowouts: initiation, geomorphology and dynamics. Geomorphology. 2002;48:245–268. doi: 10.1016/S0169-555X(02)00184-8
2. Keijsers JGS, Poortinga A, Riksen MJPM, Maroulis J. Spatio-temporal variability in accretion and erosion of coastal foredunes in the Netherlands: Regional climate and local topography. PLOS ONE. 2014;9. doi: 10.1371/journal.pone.0091115
3. Bagnold RA. The physics of blown sand and desert dunes. Methuen & Co. LTD. London; 1941.
4. Kawamura R. Study of sand movement by wind. The reports of the Institute of Science and Technology. 1951;5:95–112.
5. Zingg AW. Wind tunnel studies of the movement of sedimentary material. In: Proceedings, 5th Hydraulics Conference, Studies in Engineering. vol. 34; 1953. p. 111–135.
6. Owen PR. Saltation of uniform grains in air. Journal of Fluid Mechanics. 1964;20:225–242. doi: 10.1017/S0022112064001173
7. Kadib AA. A function for sand movement by wind. UCLA-Berkeley, Berkeley, CA: University of California; 1965. HEL 2-8.
8. Hsu SA. Wind stress criteria in eolian sand transport. Journal of Geophysical Research. 1971;76:8684–8686. doi: 10.1029/JC076i036p08684
9. Lettau K, Lettau H. Experimental and micrometeorological field studies of dune migration. In: Lettau K, Lettau H, editors. Exploring the World’s Driest Climate. IES Report 101. Center for Climatic Research, University of Wisconsin-Madison; 1978. p. 110–147.
10. Sorensen M. On the rate of aeolian sand transport. Geomorphology. 2004;59:53–62. doi: 10.1016/j.geomorph.2003.09.005
11. Hesp PA, Hyde R. Flow dynamics and geomorphology of a trough blowout. Sedimentology. 1996;43:505–525. doi: 10.1046/j.1365-3091.1996.d01-22.x
12. Davidson-Arnott RGD, Law MN. Measurements and prediction of long-term sediment supply to coastal foredunes. Journal of Coastal Research. 1996;12:654–663.
13. de Vries S, Southgate HN, Kanning W, Ranasinghe R. Dune behavior and aeolian transport on decadal timescales. Coastal Engineering. 2012;67:41–53. doi: 10.1016/j.coastaleng.2012.04.002
14. Sherman DJ, Li B. Predicting aeolian sand transport rates: A reevaluation of models. Aeolian Research. 2012;3:371–378. doi: 10.1016/j.aeolia.2011.06.002
15. Barchyn TE, Martin RL, Kok JF, Hugenholtz CH. Fundamental mismatches between measurements and models in aeolian sediment transport prediction: The role of small scale variability. Aeolian Research. 2014;15:245–251. doi: 10.1016/j.aeolia.2014.07.002
16. Donker JJA, Maarseveen M, Ruessink BG. Spatio-Temporal Variations in Foredune Dynamics Determined with Mobile Laser Scanning. Journal of Marine Science and Engineering. 2018;6. doi: 10.3390/jmse6040126
17. van der Wal D. Effect of fetch and surface texture on aeolian sand transport on two nourished beaches. Journal of Arid Environments. 1998;39:533–547. doi: 10.1006/jare.1997.0364
18. Davidson-Arnott RGD, Dawson JC. Moisture and fetch effects on rates of aeolian sediment transport, Skallingen, Denmark. In: Canadian Coastal Conference 2001; 2001. p. 309–321.
19. Bauer BO, Davidson-Arnott RGD, Hesp PA, Namikas SL, Ollerhead J, Walker IJ. Aeolian sediment transport on a beach: Surface moisture, wind fetch, and mean transport. Geomorphology. 2009;105:106–116. doi: 10.1016/j.geomorph.2008.02.016
20. Delgado-Fernandez I. A review of the application of the fetch effect to modelling sand supply to coastal foredunes. Aeolian Research. 2010;2:61–70. doi: 10.1016/j.aeolia.2010.04.001
21. Delgado-Fernandez I, Davidson-Arnott R. Meso-scale aeolian sediment input to coastal dunes: The nature of aeolian transport events. Geomorphology. 2011;126:217–232. doi: 10.1016/j.geomorph.2010.11.005
22. de Vries S, van Thiel de Vries JSM, van Rijn LC, Arens SM, Ranasinghe R. Aeolian sediment transport in supply limited situations. Aeolian Research. 2014;12:75–85. doi: 10.1016/j.aeolia.2013.11.005
23. de Vries S, Arens SM, de Schipper MA, Ranasinghe R. Aeolian sediment transport on a beach with a varying sediment supply. Aeolian Research. 2014;15:235–244. doi: 10.1016/j.aeolia.2014.08.001
24. Duarte-Campos L, Wijnberg KM, Hulscher SJMH. Estimating Annual Onshore Aeolian Sand Supply from the Intertidal Beach Using an Aggregated-Scale Transport Formula. Journal of Marine Science and Engineering. 2018;6(127).
25. Arens SM, Van Kraam-Peters HME, Van Boxel JH. Air flow over foredunes and implications for sand transport. Earth Surface Processes and Landforms. 1995;20(4):315–332. doi: 10.1002/esp.3290200403
26. Arens SM. Patterns of sand transport on vegetated foredunes. Geomorphology. 1996;17:339–350. doi: 10.1016/0169-555X(96)00016-5
27. Bauer BO, Davidson-Arnott RGD, Walker IJ, Hesp PA, Ollerhead J. Wind direction and complex sediment transport response across a beach-dune system. Earth Surface Processes and Landforms. 2012;37:1661–1677. doi: 10.1002/esp.3306
28. Bowen AJ, Lindley D. A wind-tunnel investigation of the wind speed and turbulence characteristics close to the ground over various excarpment shapes. Boundary-Layer Meteorology. 1977;12:259–271. doi: 10.1007/BF00121466
29. Wiggs GFS, Livingstone I, Warren A. The role of streamline curvature in sand dune dynamics: evidence from field and wind tunnel measurements. Geomorphology. 1996;17:29–46. doi: 10.1016/0169-555X(95)00093-K
30. Qian G, Dong Z, Luo W, Lu J. Mean airflow patterns upwind of topographic obstacles and their implications for the formation of echo dunes: A wind tunnel simulation of the effects of windwind slope. Journal of Geophysical Research. 2011;116(F04026):1–12.
31. Bowen AJ. The prediction of mean wind speed above simple 2D hill shapes. Journal of Wind Engineering and Industrial Aerodynamics. 1983;15:259–270. doi: 10.1016/0167-6105(83)90196-4
32. Tsoar H, White B, Berman E. The effect of slope on sand transport—numerical modelling. Landscape and Urban Planning. 1996;34:171–181. doi: 10.1016/0169-2046(95)00235-9
33. Smyth TAG, Hesp PA. Aeolian dynamics of beach scraped ridge and dyke structures. Coastal Engineering. 2015;99:38–45. doi: 10.1016/j.coastaleng.2015.02.011
34. Anthony EJ, Ruz MH, Vanhèe S. Aeolian sand transport over complex intertidal bar-trough beach topography. Geomorphology. 2009;105:95–105. doi: 10.1016/j.geomorph.2007.12.013
35. Chapman CA, Walker IJ, Hesp PA, Bauer BO, Davidson-Arnott RGD. Turbulent Reynolds stress and quadrant event activity in wind flow over a coastal foredune. Geomorphology. 2012;151-152:1–12. doi: 10.1016/j.geomorph.2011.11.015
36. Chapman CA, Walker IJ, Hesp PA, Bauer BO, Davidson-Arnott RGD, Ollerhead J. Reynolds stress and sand transport over a foredune. Earth Surface Processes and Landforms. 2013;38:1735–1747. doi: 10.1002/esp.3428
37. Grilliot MJ, Walker IJ, Bauer BO. Airflow dynamics over a beach and foredune system with large woody debris. Geosciences. 2018;8(147).
38. Hesp PA, Davidson-Arnott RGD, Walker I, Ollerhead J. Flow dynamics over a foredune at Prince Edward Island, Canada. Geomorphology. 2005;65:71–84. doi: 10.1016/j.geomorph.2004.08.001
39. Walker IJ, Davidson-Arnott RGD, Bauer BO, Hesp PA, Delgado-Fernandez I, Ollerhead J, et al. Scale-dependent perspectives on the geomorphology and evolution of beach-dune systems. Earth-Science Reviews. 2017;171:220–253. doi: 10.1016/j.earscirev.2017.04.011
40. Hesp PA, Smyth TAG, Nielsen P, Walker IJ, Bauer BO, Davidson-Arnott RGD. Flow deflection over a foredune. Geomorphology. 2015;230:64–74. doi: 10.1016/j.geomorph.2014.11.005
41. Hage PM, Ruessink BG, Donker JJA. Determining sand strip characteristics using Argus video monitoring. Geomorphology. 2018;129:258–278.
42. de Winter RC, Gongriep F, Ruessink BG. Observations and modeling of alongshore variability in dune erosion at Egmond aan Zee, the Netherlands. Coastal Engineering. 2015;99:167–175. doi: 10.1016/j.coastaleng.2015.02.005
43. van Boxel JH, Sterk G, Arens SM. Sonic anemometers in aeolian sediment transport research. Geomorphology. 2004;59:131–147. doi: 10.1016/j.geomorph.2003.09.011
44. Wieringa J. Representativeness of wind observations at airports. Bulletin American Meteorological Society. 1980;61(9):962–971. doi: 10.1175/1520-0477(1980)061%3C0962:ROWOAA%3E2.0.CO;2
45. Miot da Silva G, Hesp P. Coastline orientation, aeolian sediment transport and foredune and dune field dynamics of Mocambique Beach, Southern Brazil. Aeolian Research. 2018;33:1–11.
46. Donker JJA, de Winter W, Ruessink BG. Modelling the effect of coastal foredune topography on annual aeolian sand input from the beach. In: 20th EGU General Assembly, EGU2018, Proceedings from the conference held 4-13 April, 2018 in Vienna, Austria; 2018. p. 8748. Available from: adsabs.harvard.edu/abs/2018EGUGA..20.8748D.
47. Hoonhout BM, de Vries S. A process-based model for aeolian sediment transport and spatiotemporal varying sediment availability. Journal of Geophysical Research: Earth Surface. 2016;121:1555–1575.
Článok vyšiel v časopise
PLOS One
2020 Číslo 1
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Psychometric validation of Czech version of the Sport Motivation Scale
- Comparison of Monocyte Distribution Width (MDW) and Procalcitonin for early recognition of sepsis
- Effects of supplemental creatine and guanidinoacetic acid on spatial memory and the brain of weaned Yucatan miniature pigs
- Accelerated sparsity based reconstruction of compressively sensed multichannel EEG signals