#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Natural selection contributes to food web stability


Autoři: Akihiko Mougi aff001
Působiště autorů: Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan aff001
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0227420

Souhrn

How biodiversity is maintained in ecosystems is a central issue in ecology. According to the evolutionary theory, heritable variations between individuals are important for the generation of species diversity, linking both intra and interspecific variations. The present food web model shows that intraspecific variations via natural selection also play crucial roles in maintaining the stability of large communities with diverse species. In particular, our computations indicate that larger communities need more intraspecific variation to be maintained and are powerfully stabilized when multiple traits are variable. Consequently, these variations are likely to be maintained in larger communities. Hence, intra and interspecific diversities may support each other during evolution.

Klíčová slova:

Evolutionary biology – Natural selection – Population dynamics – Community ecology – Species diversity – Species interactions – Biodiversity – Food web structure


Zdroje

1. Darwin C, (1859) On the origin of species. 6th edn. Everyman’s Library (1928). Dent, London.

2. Elton CS, Animal Ecology, (Macmillan, 1927).

3. Mayr E (1942) Systematics and the origin of species. New York, NY: Columbia University Press.

4. Kondrashov AS, Kondrashov FA, Interactions among quantitative traits in the course of sympatric speciation. Nature 400, 351–354 (1999). doi: 10.1038/22514 10432111

5. Dieckmann U, Doebeli M, On the origin of species by sympatric speciation. Nature 400, 354–357 (1999). doi: 10.1038/22521 10432112

6. Paine RT A note on trophic complexity and community stability. Am. Nat. 103:91–93 (1969).

7. Tilman D, Resource competition and community structure, Princeton, NJ (Princeton University Press, 1982).

8. Chesson PL, Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

9. McCann KS, The diversity-stability debate. Nature 405, 228–233 (2000). doi: 10.1038/35012234 10821283

10. Bascompte J, Jordano P, Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Syst. 38, 567–593 (2007).

11. Mougi A, Kondoh M, Diversity of interaction types and ecological community stability. Science 337, 349–351 (2012). doi: 10.1126/science.1220529 22822151

12. Loreau M, de Mazancourt C, Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol. Lett. 16, 106–115 (2013). doi: 10.1111/ele.12073 23346947

13. Fisher RF, (1930) The genetical theory of natural selection. Oxford Univ. Press, Oxford, U.K.

14. Fussmann GF, Loreau M, Abrams PA, Eco-evolutionary dynamics of communities and ecosystems. Funct. Ecol. 21, 465–477 (2007).

15. Yoshida T, Jones LE, Ellner SP, Fussmann GF, Hairston NG Jr., Rapid evolution drives ecological dynamics in a predator-prey system. Nature 424, 303–306 (2003). doi: 10.1038/nature01767 12867979

16. Hairston NG Jr., Ellner SP, Geber M, Yoshida T, Fox JE, Rapid evolution and the convergence of ecological and evolutionary time. Ecol. Lett. 8, 1114–1127 (2005).

17. Bailey JK, Schweitzer JA, Ubeda F, Koricheva J, LeRoy CJ, Madritch MD, et al, From genes to ecosystems: a synthesis of the effects of plant genetic factors across levels of organization. Phil. Trans. Roy. Soc. B.: Biol. Sci. 364, 1607–1616 (2009).

18. Palkovacs EP, Marshall MC, Lamphere BA, Lynch BR, Weese DJ, Fraser DF, et al, Experimental evaluation of evolution and coevolution as agents of ecosystem change in Trinidadian streams. Phil. Trans. Roy. Soc. B.: Biol. Sci. 364, 1617–1628 (2009).

19. Post DM, Palkovacs EP, Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play. Phil. Trans. Roy. Soc. B.: Biol. Sci. 364, 1629–1640 (2009).

20. Schoener TW, The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331, 426–429 (2011). doi: 10.1126/science.1193954 21273479

21. Geritz SAH, Kisdi E, Meszéna G, Metz JA, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12, 35–57 (1998).

22. Abrams PA, The evolution of predator-prey interactions: theory and evidence. Annu. Rev. Ecol. Syst. 31, 79–105 (2000).

23. Mougi A, Allelopathic adaptation can cause competitive coexistence. Theor. Ecol. 6, 165–171 (2013).

24. Mougi A, Coevolution can stabilize a mutualistic interaction. Evol. Ecol. 30, 365–377(2016).

25. Mougi A, Iwasa Y, Evolution towards oscillation or stability in a predator-prey system. Proc. R. Soc. B. 277, 3163–3171 (2010). doi: 10.1098/rspb.2010.0691 20504808

26. Barraclough TG, How do species interactions affect evolutionary dynamics across whole communities? Annu. Rev. Ecol. Syst. 46, 25–48 (2015).

27. Toju H, Yamamichi M, Guimarães PR Jr., Olesen J, Mougi A, Yoshida T, et al, Species-rich networks and eco-evolutionary synthesis at the metacommunity level. Nature Ecol. Evol. 1, 0024 (2017).

28. Terhorst CP, Zee PC, Heath KD, Miller TE, Pastore AI, Patel S, et al, Evolution in a community context: Trait responses to multiple species interactions. Am. Nat. 191, 368–380 (2018).

29. Jones LE, Becks L, Ellner SP, Hairston NG Jr., Yoshida T, Fussmann G, Rapid contemporary evolution and clonal food web dynamics. Phil. Trans. Roy. Soc. B.: Biol. Sci. 364, 1579–1591 (2009).

30. Becks L, Ellner SP, Jones LE, Hairston NG Jr., Reduction of adaptive genetic diversity radically alters eco‐evolutionary community dynamics. Ecol. Lett. 13, 989–997 (2010). doi: 10.1111/j.1461-0248.2010.01490.x 20528898

31. Janzen DH, When is it coevolution? Evolutoin 34, 611–612 (1980).

32. Vellend M, Geber MA, Connections between species diversity and genetic diversity. Ecol. Lett. 8, 767–781 (2005).

33. Wade MJ, The co-evolutionary genetics of ecological communities. Nat. Rev. Genet. 8, 185–195 (2007). doi: 10.1038/nrg2031 17279094

34. Hughes AR, Inouye BD, Johnson MTJ, Underwood N, Vellend M, Ecological consequences of genetic diversity. Ecol. Lett. 11, 609–623 (2008). doi: 10.1111/j.1461-0248.2008.01179.x 18400018

35. Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M, et al, Why intraspecific trait variation matters in community ecology. Trend. Ecol. Evol. 26, 183–192 (2011).

36. Klauschies T, Vasseur DA, Gaedke U, Trait adaptation promotes species coexistence in diverse predator and prey communities. Ecol. Evol. 6, 4141–4159 (2016). doi: 10.1002/ece3.2172 27516870

37. Andreazzi CS, Guimarães PR, Melián CJ, Eco-evolutionary feedbacks promote fluctuating selection and long-term stability of antagonistic networks. Proc. R. Soc. B. 285, 20172596 (2018). doi: 10.1098/rspb.2017.2596 29540515

38. Barabás G, D'Andrea R, The effect of intraspecific variation and heritability on community pattern and robustness. Ecol. Lett. 19, 977–986 (2016). doi: 10.1111/ele.12636 27335262

39. Yamaguchi W, Kondoh M, Kawata M, Effects of evolutionary changes in prey use on the relationship between food web complexity and stability. Popul. Ecol. 53, 59–72 (2011).

40. Martinez ND, Artifacts or Attributes? effects of resolution on the little rock lake food web. Ecol. Monogr. 61, 367–392 (1991).

41. Polis GA, Complex trophic interactions in deserts: An empirical critique of food-web theory. Am. Nat. 138, 123–155 (1991).

42. Goldwasser L, Roughgarden J, Construction and analysis of a large caribbean food web. Ecology 74, 1216–1233 (1993).

43. Cohen JE, Briand F, Newman CM, Community food webs: Data and theory (Springer-Verlag, Berlin, 1990).

44. Kondoh M, Foraging adaptation and the relationship between food-web complexity and stability. Science 299, 1388–1391 (2003). doi: 10.1126/science.1079154 12610303

45. Humphreys WH, Production and respiration in animal populations. J. Anim. Ecol. 48, 427–453 (1979).

46. Robbins CT, (1983) Wildlife feeding and nutrition. Academic Press, New York, New York, USA.

47. Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, et al, The ecology of individuals: incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003). doi: 10.1086/343878 12650459

48. Duffy MA, Ecological consequences of intraspecific variation in lake Daphnia. Freshwat. Biol. 55, 995–1004 (2010).

49. Taylor PD, Jonker LB, Evolutionary stable strategies and game dynamics. Math. Biosci. 40, 145–156 (1978).

50. Schuster P, Sigmund K, Replicator dynamics. J. Theor. Biol., 533–538 (1983).

51. Harper JL, (1977) The Population Biology of Plants. Academic Press, New York, NY.

52. Gross T, Rudolf L, Levin SA, Dieckmann U, Generalized models reveal stabilizing factors in food webs. Science 325, 747–750 (2009). doi: 10.1126/science.1173536 19661430

53. Vellend M, The consequences of genetic diversity in competitive communities. Ecology 87, 304–311 (2006). doi: 10.1890/05-0173 16637355

54. Yamauchi A, Miki T, Intraspecific niche flexibility facilitates species coexistence in a competitive community with a fluctuating environment. Oikos 118, 55–66 (2009).

55. Barabás G, D'Andrea R, The effect of intraspecific variation and heritability on community pattern and robustness. Ecol. Lett. 19, 977–986 (2016). doi: 10.1111/ele.12636 27335262

56. Klauschies T, Vasseur DA, Gaedke U, Trait adaptation promotes species coexistence in diverse predator and prey communities. Ecol. Evol. 6, 4141–4159 (2016). doi: 10.1002/ece3.2172 27516870

57. Van Valen L, A new evolutionary law. Evol. Theory 1, 1–30 (1973).

58. Stenseth NC, Maynard Smith J, Coevolutionn in ecosystems: Red Queen evolution or stasis? Evolution 38, 870–880 (1984). doi: 10.1111/j.1558-5646.1984.tb00358.x 28555824

59. Des Roches S, Post DM, Turley NE, Bailey JK, Hendry AP, Kinnison MT, et al, The ecological importance of intraspecific variation. Nature Ecol. Evol. 2, 57 (2017).

60. Allendorf FW, England PR, Luikart G, Ritchie PA, Ryman N, Genetic effects of harvest on wild animal populations. Trends. Ecol. Evol. 23, 327–337 (2008). doi: 10.1016/j.tree.2008.02.008 18439706

61. Jorgensen C, Enberg K, Dunlop ES, Arlinghaus R, Boukal DS, Brander K, et al, Managing evolving fish stocks. Science 318, 1247–1248 (2007). doi: 10.1126/science.1148089 18033868

62. Allendorf FW, Hard JJ, Human-induced evolution caused by unnatural selection through harvest of wild animals. Proc. Natl. Acad. Sci. U.S.A. 106, 9987–9994 (2009). doi: 10.1073/pnas.0901069106 19528656

63. Young A, Boyle T, Brown T, The population genetic consequences of habitat fragmentation for plants. Trends. Ecol. Evol. 11, 413–418 (1996). doi: 10.1016/0169-5347(96)10045-8 21237900

64. Keyghobadi N, The genetic implications of habitat fragmentation for animals. Can J Zool 85, 1049–1064 (2007).


Článok vyšiel v časopise

PLOS One


2020 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#