Microvesicles from Lactobacillus reuteri (DSM-17938) completely reproduce modulation of gut motility by bacteria in mice
Autoři:
Christine L. West aff001; Andrew M. Stanisz aff001; Yu-Kang Mao aff001; Kevin Champagne-Jorgensen aff001; John Bienenstock aff001; Wolfgang A. Kunze aff001
Působiště autorů:
McMaster Brain-Body Institute, St. Joseph’s Healthcare, Hamilton, ON, Canada
aff001; Department of Biology, McMaster University, Hamilton, ON, Canada
aff002; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
aff003; Department of Medicine, McMaster University, Hamilton, ON, Canada
aff004; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
aff005
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0225481
Souhrn
Microvesicles are small lipid, bilayer structures (20–400 nm in diameter) secreted by bacteria, fungi, archaea and parasites involved in inter-bacterial communication and host-pathogen interactions. Lactobacillus reuteri DSM-17938 (DSM) has been shown to have clinical efficacy in the treatment of infantile colic, diarrhea and constipation. We have shown previously that luminal administration to the mouse gut promotes reduction of jejunal motility but increases that in the colon. The production of microvesicles by DSM has been characterized, but the effect of these microvesicles on gastrointestinal motility has yet to be evaluated. To investigate a potential mechanism for the effects of DSM on the intestine, the bacteria and its products have here been tested for changes in velocity, frequency, and amplitude of contractions in intact segments of jejunum and colon excised from mice. The effect of the parent bacteria (DSM) was compared to the conditioned media in which it was grown, and the microvesicles it produced. The media used to culture the bacteria (broth) was tested as a negative control and the conditioned medium was tested after the microvesicles had been removed. DSM, conditioned medium, and the microvesicles all produced comparable effects in both the jejunum and the colon. The treatments individually decreased the velocity and frequency of propagating contractile cluster contractions in the jejunum and increased them in the colon to a similar degree. The broth control had little effect in both tissues. Removal of the microvesicles from the conditioned medium almost completely eradicated their effect on motility in both tissues. These results show that the microvesicles from DSM alone can completely reproduce the effects of the whole bacteria on gut motility. Furthermore, they suggest a new approach to the formulation of orally active bacterial therapeutics and offer a novel way to begin to identify the active bacterial components.
Klíčová slova:
Bacteria – Pathogen motility – Gastrointestinal tract – Gut bacteria – Lactobacillus – Jejunum – Colon – Gastrointestinal motility disorders
Zdroje
1. Deatherage BL, Cookson BT. Membrane vesicle release in bacteria, eukaryotes, and archaea: A conserved yet underappreciated aspect of microbial life. Infect Immun. 2012;80: 1948–1957. doi: 10.1128/IAI.06014-11 22409932
2. Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles. Nat Rev Microbiol. 2019;17: 13–24. doi: 10.1038/s41579-018-0112-2 30397270
3. Brown L, Wolf JM, Prados-rosales R, Casadevall A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol. 2015;13: 620–630. doi: 10.1038/nrmicro3480 26324094
4. Bitto NJ, Kaparakis-Liaskos M. The therapeutic benefit of bacterial membrane vesicles. Int J Mol Sci. 2017;18: 1–15. doi: 10.3390/ijms18061287 28621731
5. Kuehn MJ, Kesty NC. Bacterial outer membrane vesicles and the host–pathogen interaction. Genes Dev. 2005;19: 2645–2655. doi: 10.1101/gad.1299905 16291643
6. Hoekstra D, Van Der Laan JW, De Leij L, Witholt B. Release of Outer Membrane Fragments from Normally Growing Escherichia coli. Biochem Biophys Acta. 1976;455: 889–899. doi: 10.1016/0005-2736(76)90058-4 793634
7. Shen Y, Letizia M, Torchia G, Lawson GW, Karp CL, Ashwell JD, et al. Outer Membrane Vesicles of a Human Commensal Mediate Immune Regulation and Disease Protection. Cell Host Microbe. 2012;12: 509–520. doi: 10.1016/j.chom.2012.08.004 22999859
8. Lee EY, Choi DY, Kim DK, Kim JW, Park JO, Kim S, et al. Gram-positive bacteria produce membrane vesicles: Proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics. 2009;9: 5425–5436. doi: 10.1002/pmic.200900338 19834908
9. Al-Nedawi K, Mian MF, Hossain N, Karimi K, Mao YK, Forsythe P, et al. Gut commensal microvesicles reproduce parent bacterial signals to host immune and enteric nervous systems. FASEB J. 2015;29: 684–695. doi: 10.1096/fj.14-259721 25392266
10. Li M, Lee K, Hsu M, Nau G, Mylonakis E, Ramratnam B. Lactobacillus-derived extracellular vesicles enhance host immune responses against vancomycin-resistant enterococci. BMC Microbiol. 2017;17: 66. doi: 10.1186/s12866-017-0977-7 28288575
11. Dean SN, Leary DH, Sullivan CJ, Oh E, Walper SA. Isolation and characterization of Lactobacillus -derived membrane vesicles. Sci Rep. 2019;9: 1–11. doi: 10.1038/s41598-018-37186-2
12. Grande R, Celia C, Mincione G, Stringaro A, Puca V, Santoliquido R, et al. Detection and Physicochemical Characterization of Membrane Vesicles (MVs) of Lactobacillus reuteri DSM 17938. Front Microbiol. 2017;8: 1–10. doi: 10.3389/fmicb.2017.00001
13. Urbańska M, Szajewska H. The efficacy of Lactobacillus reuteri DSM 17938 in infants and children: a review of the current evidence. Eur J Pediatr. 2014;173: 1327–1337. doi: 10.1007/s00431-014-2328-0 24819885
14. Rosander A, Connolly E, Roos S. Removal of antibiotic resistance gene-carrying plasmids from Lactobacillus reuteri ATCC 55730 and characterization of the resulting daughter strain, L. reuteri DSM 17938. Appl Environ Microbiol. 2008;74: 6032–6040. doi: 10.1128/AEM.00991-08 18689509
15. Chau K, Lau E, Greenberg S, Jacobson S, Yazdani-Brojeni P, Verma N, et al. Probiotics for infantile colic: a randomized, double-blind, placebo-controlled trial investigating Lactobacillus reuteri DSM 17938. J Pediatr. 2015;166: 74–78. doi: 10.1016/j.jpeds.2014.09.020 25444531
16. Savino F, Cordisco L, Tarasco V, Palumeri E, Calabrese R, Oggero R, et al. Lactobacillus reuteri DSM 17938 in infantile colic: a randomized, double-blind, placebo-controlled trial. Pediatrics. 2010;126: e526–e533. doi: 10.1542/peds.2010-0433 20713478
17. Dinleyici EC PROBAGE Study Group, Vandenplas Y. Lactobacillus reuteri DSM 17938 effectively reduces the duration of acute diarrhoea in hospitalised children. Acta Paediatr. 2014;103: e300–e305. doi: 10.1111/apa.12617
18. Coccorullo P, Strisciuglio C, Martinelli M, Miele E, Greco L, Staiano A. Lactobacillus reuteri (DSM 17938) in infants with functional chronic constipation: A double-blind, randomized, placebo-controlled study. J Pediatr. 2010;157: 598–602. doi: 10.1016/j.jpeds.2010.04.066 20542295
19. Indrio F, Riezzo G, Raimondi F, Bisceglia M, Filannino A, Cavallo L, et al. Lactobacillus reuteri accelerates gastric emptying and improves regurgitation in infants. Eur J Clin Invest. 2011;41: 417–422. doi: 10.1111/j.1365-2362.2010.02425.x 21114493
20. Wu RY, Pasyk M, Wang B, Forsythe P, Bienenstock J, Mao YK, et al. Spatiotemporal maps reveal regional differences in the effects on gut motility for Lactobacillus reuteri and rhamnosus strains. Neurogastroenterol Motil. 2013;25: e205–e214. doi: 10.1111/nmo.12072 23316914
21. Cao Y-N, Feng L, Liu Y, Jiang K, Zhang M, Gu Y, et al. Effect of Lactobacillus rhamnosus GG supernatant on serotonin transporter expression in rats with post- infectious irritable bowel syndrome. World J Gastroenterol. 2018;24: 338–350. doi: 10.3748/wjg.v24.i3.338 29391756
22. He X, Zeng Q, Puthiyakunnon S, Zeng Z, Yang W, Qiu J, et al. Lactobacillus rhamnosus GG supernatant enhance neonatal resistance to systemic Escherichia coli K1 infection by accelerating development of intestinal defense. Sci Rep. 2017;7: 1–14. doi: 10.1038/s41598-016-0028-x
23. Wang Y, Liu Y, Sidhu A, Ma Z, Mcclain C, Feng W. Lactobacillus rhamnosus GG culture supernatant ameliorates acute alcohol-induced intestinal permeability and liver injury. Am J Physiol Gastrointest Liver Physiol. 2012;303: 32–41. doi: 10.1152/ajpgi.00024.2012 22538402
24. Maghsood F, Mirshafiey A, Farahani MM, Modarressi MH, Jafari P, Motevaseli E. Dual Effects of Cell Free Supernatants from Lactobacillus acidophilus and Lactobacillus rhamnosus GG in Regulation of MMP-9 by Up-Regulating TIMP-1 and Down-Regulating CD147 in PMA- Differentiated THP-1 Cells. Cell J. 2018;19: 559–568. doi: 10.22074/cellj.2018.4447 29105390
25. Petrof EO, Claud EC, Sun J, Abramova T, Guo Y, Waypa TS, et al. Bacteria-free solution derived from Lactobacillus plantarum inhibits multiple NF-kappaB pathways and inhibits proteasome function. Inflamm Bowel Dis. 2009;15: 1537–1547. doi: 10.1002/ibd.20930 19373789
26. West C, Stanisz AM, Wong A, Kunze WA, West C, Stanisz AM, et al. Effects of Saccharomyces cerevisiae or boulardii yeasts on acute stress induced intestinal dysmotility. World J Gastroenterol. 2016;22: 10532–10544. doi: 10.3748/wjg.v22.i48.10532 28082805
27. Rubio APD, Martínez JH, Casillas DCM, Leskow FC, Piuri M, Pérez OE. Lactobacillus casei BL23 Produces Microvesicles Carrying Proteins That Have Been Associated with Its Probiotic Effect. Front Microbiol. 2017;8: 1–12. doi: 10.3389/fmicb.2017.00001
28. Bäuerl C, Fang P, Polk DB, Monedero V. Functional Analysis of the p40 and p75 Proteins from Lactobacillus casei BL23. J Mol Microbiol Biotechnol. 2010;19: 231–241. doi: 10.1159/000322233 21178363
29. Wang B, Mao YK, Diorio C, Wang L, Huizinga JD, Bienenstock J, et al. Lactobacillus reuteri ingestion and IKCa channel blockade have similar effects on rat colon motility and myenteric neurones. Neurogastroenterol Motil. 2010;22: 98–e33. doi: 10.1111/j.1365-2982.2009.01384.x 19788711
30. Delungahawatta T, Amin JY, Stanisz AM, Bienenstock J, Forsythe P, Kunze WA. Antibiotic driven changes in gut motility suggest direct modulation of enteric nervous system. Front Neurosci. 2017;11: 1–12. doi: 10.3389/fnins.2017.00001
31. Iyer LM, Aravind L, Coon SL, Klein DC, Koonin E V. Evolution of cell-cell signaling in animals: Did late horizontal gene transfer from bacteria have a role? Trends in Genetics. 2004. pp. 292–299. doi: 10.1016/j.tig.2004.05.007 15219393
32. Lyte M. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: Microbial endocrinology in the design and use of probiotics. Bioessays. 2011;33: 574–581. doi: 10.1002/bies.201100024 21732396
33. Kunze WA, Mao YK, Wang B, Huizinga JD, Ma X, Forsythe P, et al. Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening. J Cell Mol Med. 2009;13: 2261–2270. doi: 10.1111/j.1582-4934.2009.00686.x 19210574
Článok vyšiel v časopise
PLOS One
2020 Číslo 1
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Psychometric validation of Czech version of the Sport Motivation Scale
- Comparison of Monocyte Distribution Width (MDW) and Procalcitonin for early recognition of sepsis
- Effects of supplemental creatine and guanidinoacetic acid on spatial memory and the brain of weaned Yucatan miniature pigs
- Accelerated sparsity based reconstruction of compressively sensed multichannel EEG signals