Potential socioeconomic impacts from ocean acidification and climate change effects on Atlantic Canadian fisheries
Autoři:
Tyler J. B. Wilson aff001; Sarah R. Cooley aff002; Travis C. Tai aff003; William W. L. Cheung aff003; Peter H. Tyedmers aff001
Působiště autorů:
School for Resource and Environmental Studies, Dalhousie University, Halifax, NS, Canada
aff001; Ocean Conservancy, Washington, DC, United States of America
aff002; Changing Ocean Research Unit, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, B.C., Canada
aff003
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0226544
Souhrn
Ocean acidification is an emerging consequence of anthropogenic carbon dioxide emissions. The full extent of the biological impacts are currently not entirely defined. However, it is expected that invertebrate species that rely on the mineral calcium carbonate will be directly affected. Despite the limited understanding of the full extent of potential impacts and responses there is a need to identify potential pathways for human societies to be affected by ocean acidification. Research on these social implications is a small but developing field. This research contributes to this field by using an impact assessment framework, informed by a biophysical model of future species distributions, to investigate potential impacts facing Atlantic Canadian society from potential changes in shellfish fisheries driven by ocean acidification and climate change. New Brunswick and Nova Scotia are expected to see declines in resource accessibility but are relatively socially insulated from these changes. Conversely, Prince Edward Island, along with Newfoundland and Labrador are more socially vulnerable to potential losses in fisheries, but are expected to experience relatively minor net changes in access.
Klíčová slova:
Shrimp – Fisheries – Climate change – Marine ecology – Aquaculture – Canada – Crabs – Oysters
Zdroje
1. Doney SC, Fabry VJ, Feely RA, Kleypas JA. Ocean acidification: The other CO2 problem. Annu Rev Mar Sci. 2009;1: 169–192. doi: 10.1146/annurev.marine.010908.163834 21141034
2. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature. 2005;437: 681–686. doi: 10.1038/nature04095 16193043
3. Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh G, et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Change Biol. 2013;19: 1884–1896. doi: 10.1111/gcb.12179 23505245
4. Kroeker KJ, Kordas RL, Crim RN, Singh GG. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett. 2010;13: 1419–1434. doi: 10.1111/j.1461-0248.2010.01518.x 20958904
5. Ries JB, Cohen AL, McCorkle DC. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology. 2009;37: 1131–1134. doi: 10.1130/G30210A.1
6. Gazeau F, Quiblier C, Jansen JM, Gattuso J-P, Middelburg JJ, Heip CHR. Impact of elevated CO2 on shellfish calcification. Geophys Res Lett. 2007;34: n/a–n/a. doi: 10.1029/2006GL028554
7. Waldbusser GG, Hales B, Langdon CJ, Haley BA, Schrader P, Brunner EL, et al. Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nat Clim Change. 2014;5. doi: 10.1038/nclimate2479
8. Washington State. Ocean Acidification: From Knowledge to Action, Washington State’s Strategic Response. Washington State Blue Ribbon Panel on Ocean Acidification; 2012. Report No.: 12-01-15. Available: http://www.ecy.wa.gov/water/marine/oceanacidification.html
9. FAO. The state of world fisheries and aquaculture 2016. Rome: Food and Agriculture Organization of the United Nations; 2016 p. 200. Available: http://www.fao.org/fishery/sofia/en
10. Smith MD, Roheim CA, Crowder LB, Halpern BS, Turnipseed M, Anderson JL, et al. Sustainability and global seafood. Science. 2010;327: 784. doi: 10.1126/science.1185345 20150469
11. Cooley S, Lucey N, Kite-Powell H, Doney SC. Nutrition and income from molluscs today imply vulnerability to ocean acidification tomorrow. Fish Fish. 2012;13: 182–215. doi: 10.1111/j.1467-2979.2011.00424.x
12. Narita D, Rehdanz K, Tol RSJ. Economic costs of ocean acidification: a look into the impacts on global shellfish production. Clim Change. 2012;113: 1049–1063. doi: 10.1007/s10584-011-0383-3
13. Narita D, Rehdanz K. Economic impact of ocean acidification on shellfish production in Europe. J Environ Plan Manag. 2016; 1–19. doi: 10.1080/09640568.2016.1162705
14. Ekstrom JA, Suatoni L, Cooley SR, Pendleton LH, Waldbusser GG, Cinner JE, et al. Vulnerability and adaptation of US shellfisheries to ocean acidification. Nat Clim Change. 2015;5: 207–214.
15. Heinrich L, Krause T. Fishing in acid waters: A vulnerability assessment of the Norwegian fishing industry in the face of increasing ocean acidification. Integr Environ Assess Manag. 2016; n/a–n/a. doi: 10.1002/ieam.1843 27563756
16. Moore C. Welfare impacts of ocean acidification: an integrated assessment model of the us mollusk fishery. Washington DC: EPA; 2011 p. 35. Report No.: 11–06. Available: https://www.epa.gov/environmental-economics/working-paper-welfare-impacts-ocean-acidification-integrated-assessment
17. Mathis JT, Cooley SR, Lucey N, Colt S, Ekstrom J, Hurst T, et al. Ocean acidification risk assessment for Alaska’s fishery sector. Prog Oceanogr. 2015;136: 71–91. doi: 10.1016/j.pocean.2014.07.001
18. Cardona OD, van Aalst MK, Birkmann J, McGregor G, Perez R, Pulwarty RS, et al. Determinants of risk: exposure and vulnerability. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, et al., editors. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge, UK, and New York, NY, USA: Cambridge University Press; 2012. pp. 65–108.
19. DFO. Canada’s fisheries fast facts 2016. Fisheries and Oceans Canada; 2017 p. 6. Available: http://www.dfo-mpo.gc.ca/stats/facts-Info-16-eng.htm
20. DFO. Seafisheries landings. 2017. Available: http://www.dfo-mpo.gc.ca/stats/commercial/sea-maritimes-eng.htm
21. Divovich E, Belhabib D, Zeller D, Pauly D. Eastern Canada, “a fishery with no clean hands” Marine fisheries catch reconstruction from 1950 to 2010. University of British Columbia; 2015. Report No.: 2015–56.
22. DFC. Federal support to provinces and territories. In: Department of Finance Canada [Internet]. 2017 [cited 10 Nov 2017]. Available: https://www.fin.gc.ca/fedprov/mtp-eng.asp
23. DFO. Atlantic fisheries policy review—A policy framework for the management of fisheries on Canada’s Atlantic Coast. Ottawa: Fisheries and Oceans Canada; 2004. Available: http://www.dfo-mpo.gc.ca/reports-rapports/regs/afpr-rppa/framework-cadre-eng.htm
24. Statistics Canada. 2011 Census. Statistics Canada; 2011. Available: https://www.statcan.gc.ca/tables-tableaux/sum-som/l01/cst01/demo62d-eng.htm
25. NAFO. Northwest Atlantic Fisheries Organization. [cited 10 Nov 2017]. Available: https://www.nafo.int/About-us
26. Bank of Canada. Inflation calculator. 2017 [cited 27 Nov 2017]. Available: http://www.bankofcanada.ca/rates/related/inflation-calculator/
27. CAIA. Canadian Aquaculture Industry Alliance. 2018. Available: http://www.aquaculture.ca/aquaculture-species-index
28. Crain CM, Kroeker K, Halpern BS. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol Lett. 2008;11: 1304–1315. doi: 10.1111/j.1461-0248.2008.01253.x 19046359
29. Ghedini G, Connell SD. Moving ocean acidification research beyond a simple science: Investigating ecological change and their stabilizers. Food Webs. 2017. doi: 10.1016/j.fooweb.2017.03.003
30. Kroeker KJ, Kordas RL, Harley CDG. Embracing interactions in ocean acidification research: confronting multiple stressor scenarios and context dependence. Biol Lett. 2017;13. doi: 10.1098/rsbl.2016.0802 28356409
31. Cheung WWL, Dunne J, Sarmiento JL, Pauly D. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES J Mar Sci J Cons. 2011;68: 1008–1018. doi: 10.1093/icesjms/fsr012
32. Cheung WWL, Lam V, Pauly D. Modelling present and climate-shifted distribution of marine fishes and invertebrates. University of British Columbia; 2008 p. 72. Report No.: 16(3). Available: http://hdl.handle.net/2429/40936
33. Cheung WWL, Reygondeau G, Frölicher TL. Large benefits to marine fisheries of meeting the 1.5°C global warming target. Science. 2016;354: 1591. doi: 10.1126/science.aag2331 28008069
34. Tai TC, Harley CDG, Cheung WWL. Comparing model parameterizations of the biophysical impacts of ocean acidification to identify limitations and uncertainties. Ecol Model. 2018;385: 1–11. doi: 10.1016/j.ecolmodel.2018.07.007
35. Portner HO, Lannig G. Chapter 4 Oxygen and Capacity Limited Thermal Tolerance. In: Richards JG, Farrell AP, Brauner CJ, editors. Fish Physiology. Academic Press; 2009. pp. 143–191. Available: http://www.sciencedirect.com/science/article/pii/S1546509808000046
36. Pauly D, Cheung WWL. Sound physiological knowledge and principles in modeling shrinking of fishes under climate change. Glob Change Biol. 2017;24: e15–e26. doi: 10.1111/gcb.13831 28833977
37. Lam VWY, Cheung W, Sumaila UR. Marine capture fisheries in the Arctic: winners or losers under climate change and ocean acidification? Fish Fish. 2014; n/a–n/a. doi: 10.1111/faf.12106
38. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, et al. The representative concentration pathways: an overview. Clim Change. 2011;109: 5. doi: 10.1007/s10584-011-0148-z
39. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC; 2014 p. 151. Available: http://www.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_FINAL_full_wcover.pdf
40. Cheung WWL, Lam V, Sarmiento JL, Kearney K, Watson R, Zeller D, et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob Change Biol. 2010;16: 24–35. doi: 10.1111/j.1365-2486.2009.01995.x
41. M_Map. M_Map: A mapping package for Matlab. 2014. Available: https://www.eoas.ubc.ca/~rich/map.html
42. Hajkowicz S. Multi-attributed environmental index construction. Ecol Econ. 2006;57: 122–139. doi: 10.1016/j.ecolecon.2005.03.023
43. OECD. Handbook on Constructing Composite Indicators: Methodology and User Guide. Organisation for Economic Co-operation and Development; 2008. Available: https://doi.org/10.1787/9789264043466-en
44. Statistics Canada. Table 379–0030—Gross domestic product (GDP) at basic prices, by North American Industry Classification System (NAICS), provinces and territories, annual (dollars). 2017. Report No.: 379–0030. Available: http://www5.statcan.gc.ca/cansim/a26?lang=eng&id=3790030
45. DFO. Atlantic region licences. 2017. Available: http://www.dfo-mpo.gc.ca/stats/commercial/licences-permis/licences-permis-atl-eng.htm
46. Brander L, Burke L. Rights based vs. competitive fishing of sea scallops in Nova Scotia. 1994 p. 14. Available: ftp://ftp.fao.org/docrep/fao/010/a1497e/a1497e11.pdf
47. DFO. Costs and earnings survey 2004: Atlantic region report. Ottawa: Fisheries and Oceans Canada; 2007 p. 72. Available: http://publications.gc.ca/collections/collection_2012/mpo-dfo/Fs23-501-2004-eng.pdf
48. Gardner Pinfold Consulting. Overview of the Atlantic snow crab industry. The Atlantic Council of Fisheries an Aquaculture Ministers; 2006 p. 66.
49. Gardner Pinfold Consulting. Profile of the Atlantic shrimp industry. The Atlantic Council of Fisheries an Aquaculture Ministers; 2006 p. 50.
50. Stevens G, Robert G, Burke L, Poullioux E, Roussel D, Wilson JR. The evolution of management in Canada’s offshore scallop fishery. p. 14. Available: ftp://ftp.fao.org/docrep/fao/010/a1497e/a1497e11.pdf
51. Statistics Canada. Table 282–0002—Labour force survey estimates (LFS), by sex and detailed age group, annual (persons unless otherwise noted). 2017. Report No.: 282–0002. Available: http://www5.statcan.gc.ca/cansim/a26?lang=eng&id=2820002
52. Statistics Canada. Table 282–0004—Labour force survey estimates (LFS), by educational attainment, sex and age group, annual (persons unless otherwise noted). 2017. Report No.: 282–0004. Available: http://www5.statcan.gc.ca/cansim/a26?lang=eng&id=2820004
53. Clements JC, Chopin T. Ocean acidification and marine aquaculture in North America: potential impacts and mitigation strategies. Rev Aquac. 2016; n/a–n/a. doi: 10.1111/raq.12140
54. DFO. Stimpson’s surf clam in Quebec inshore waters. DFO—Science; 2002 p. 5. Report No.: C4-11. Available: http://waves-vagues.dfo-mpo.gc.ca/Library/264626.pdf
55. DFO. Integrated Fisheries Management Plan—Inshore scallop—Maritimes region—2015. Fisheries and Oceans Canada; 2015. Available: http://www.dfo-mpo.gc.ca/fm-gp/peches-fisheries/ifmp-gmp/scallop-petoncle/scallop-petoncle2015-toc-eng.htm
56. DFO. Aquaculture. 2017. Available: http://www.dfo-mpo.gc.ca/stats/aqua/aqua-prod-eng.htm
57. Turner BL, Kasperson RE, Matson PA, McCarthy JJ, Corell RW, Christensen L, et al. A framework for vulnerability analysis in sustainability science. Proc Natl Acad Sci. 2003;100: 8074–8079. doi: 10.1073/pnas.1231335100 12792023
58. Perry AL, Low PJ, Ellis JR, Reynolds JD. Climate Change and Distribution Shifts in Marine Fishes. Science. 2005;308: 1912. doi: 10.1126/science.1111322 15890845
59. Palomares MLD, Pauly D. SeaLifeBase. 2017. Available: www.sealifebase.org
60. Tremblay M. Snow Crab (Chionoecetes opilio) Distribution Limits and AbundanceTrends on the Scotian Shelf. J Northwest Atl Fish Sci. 1997;21: 7–22.
61. Stortini CH, Shackell NL, Tyedmers P, Beazley K. Assessing marine species vulnerability to projected warming on the Scotian Shelf, Canada. ICES J Mar Sci. 2015;72: 1731–1743. doi: 10.1093/icesjms/fsv022
62. Kelly RP, Foley MM, Fisher WS, Feely RA, Halpern BS, Waldbusser GG, et al. Mitigating Local Causes of Ocean Acidification with Existing Laws. Science. 2011;332: 1036. doi: 10.1126/science.1203815 21617060
63. Hoegh-Guldberg O, Cai R, Poloczanska ES, Brewer PG, Sundby S, Hilmi K, et al. The Ocean. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, et al., editors. Climate Change 2014: Impacts, Adaptation, and Vulnerability Part B: Regional Aspects Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2014. pp. 1655–1731.
64. Madin EMP, Ban NC, Doubleday ZA, Holmes TH, Pecl GT, Smith F. Socio-economic and management implications of range-shifting species in marine systems. Glob Environ Change. 2012;22: 137–146. doi: 10.1016/j.gloenvcha.2011.10.008
65. Pauly D, Christensen V, Guénette S, Pitcher TJ, Sumaila UR, Walters CJ, et al. Towards sustainability in world fisheries. Nature. 2002;418: 689. doi: 10.1038/nature01017 12167876
66. Tremblay MJ, Pezzack DS, Gaudette J. Development of Reference Points for Inshore Lobster in the Maritimes Region (LFAs 27–38). DFO; 2012 p. 18. Report No.: 2012/028. Available: http://publications.gc.ca/collections/collection_2013/mpo-dfo/Fs70-5-2012-028-eng.pdf
67. Branch TA, DeJoseph BM, Ray LJ, Wagner CA. Impacts of ocean acidification on marine seafood. Trends Ecol Evol. 2013;28: 178–186. doi: 10.1016/j.tree.2012.10.001 23122878
68. Mumby PJ, Sanchirico JN, Broad K, Beck MW, Tyedmers P, Morikawa M, et al. Avoiding a crisis of motivation for ocean management under global environmental change. Glob Change Biol. 2017;23: 4483–4496. doi: 10.1111/gcb.13698 28447373
Článok vyšiel v časopise
PLOS One
2020 Číslo 1
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Psychometric validation of Czech version of the Sport Motivation Scale
- Comparison of Monocyte Distribution Width (MDW) and Procalcitonin for early recognition of sepsis
- Effects of supplemental creatine and guanidinoacetic acid on spatial memory and the brain of weaned Yucatan miniature pigs
- Accelerated sparsity based reconstruction of compressively sensed multichannel EEG signals