Brief communication: Long-term absence of Langerhans cells alters the gene expression profile of keratinocytes and dendritic epidermal T cells
Autoři:
Qingtai Su aff001; Aurélie Bouteau aff001; Jacob Cardenas aff003; Balaji Uthra aff003; Yuanyaun Wang aff003; Cynthia Smitherman aff003; Jinghua Gu aff003; Botond Z. Igyártó aff001
Působiště autorů:
Baylor Scott & White Research Institute, Baylor Institute for Immunology Research, Dallas, Texas, United States of America
aff001; Baylor University, Institute of Biomedical Studies, Waco, Texas, United States of America
aff002; Baylor Scott & White Research Institute, Dallas, Texas, United States of America
aff003; Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, Pennsylvania, United States of America
aff004
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0223397
Souhrn
Tissue-resident and infiltrating immune cells are continuously exposed to molecules derived from the local cells that often come in form of secreted factors, such as cytokines. These factors are known to impact the immune cells’ biology. However, very little is known about whether the tissue resident immune cells in return also affect the local environment. In this study, with the help of RNA-sequencing, we show for the first time that long-term absence of epidermal resident Langerhans cells led to significant gene expression changes in the local keratinocytes and resident dendritic epidermal T cells. Thus, immune cells might play an active role in maintaining tissue homeostasis, which should be taken in consideration at data interpretation.
Klíčová slova:
Gene expression – Sequence alignment – Cytokines – Homeostasis – Immune cells – Gene ontologies – RNA sequencing – Principal component analysis
Zdroje
1. Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell. 2014. doi: 10.1016/j.cell.2014.11.018 25480296
2. Pakalniškytė D, Schraml BU. Tissue-Specific Diversity and Functions of Conventional Dendritic Cells. Advances in Immunology. 2017. doi: 10.1016/bs.ai.2017.01.003 28413024
3. Clayton K, Vallejo AF, Davies J, Sirvent S, Polak ME. Langerhans cells-programmed by the epidermis. Frontiers in Immunology. 2017. doi: 10.3389/fimmu.2017.01676 29238347
4. Romani N, Holzmann S, Tripp CH, Koch F, Stoitzner P. Langerhans cells—Dendritic cells of the epidermis. APMIS. 2003. doi: 10.1034/j.1600-0463.2003.11107805.x 12974775
5. Kaplan DH. Ontogeny and function of murine epidermal Langerhans cells. Nature Immunology. 2017. doi: 10.1038/ni.3815 28926543
6. Kaplan DH, Jenison MC, Saeland S, Shlomchik WD, Shlomchik MJ. Epidermal Langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity. 2005. doi: 10.1016/j.immuni.2005.10.008 16356859
7. Kashem SW, Kaplan DH. Isolation of Murine Skin Resident and Migratory Dendritic Cells via Enzymatic Digestion. Curr Protoc Immunol. 2018. doi: 10.1002/cpim.45 30040218
8. Su Q, Igyártó BZ. Keratinocytes Share Gene Expression Fingerprint with Epidermal Langerhans Cells via mRNA Transfer. J Invest Dermatol. 2019. doi: 10.1016/j.jid.2019.05.006 31129057
9. Andrews S, Krueger F, Seconds-Pichon A, Biggins F, Wingett S. FastQC. A quality control tool for high throughput sequence data. Babraham Bioinformatics. Babraham Inst. 2015.
10. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011. doi: 10.14806/ej.17.1.200
11. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009. doi: 10.1093/bioinformatics/btp352 19505943
12. Liao Y, Smyth GK, Shi W. FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014. doi: 10.1093/bioinformatics/btt656 24227677
13. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014. doi: 10.1186/s13059-014-0550-8 25516281
14. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: Tool for the unification of biology. Nature Genetics. 2000. doi: 10.1038/75556 10802651
15. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009. doi: 10.1038/nprot.2008.211 19131956
16. Sergushichev AA. An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation. bioRxiv. 2016. doi: 10.1101/060012
17. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005. doi: 10.1073/pnas.0506580102 16199517
18. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011. doi: 10.1093/bioinformatics/btr260 21546393
19. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010. doi: 10.1186/gb-2010-11-10-r106 20979621
20. Gaujoux R, Seoighe C. A flexible R package for nonnegative matrix factorization. BMC Bioinformatics. 2010. doi: 10.1186/1471-2105-11-367 20598126
21. Ginestet C. ggplot2: Elegant Graphics for Data Analysis. J R Stat Soc Ser A (Statistics Soc. 2011. doi: 10.1111/j.1467-985x.2010.00676_9.x
22. Skaper SD. Nerve growth factor: a neuroimmune crosstalk mediator for all seasons. Immunology. 2017. doi: 10.1111/imm.12717 28112808
23. Boulais N, Misery L. The epidermis: A sensory tissue. European Journal of Dermatology. 2008. doi: 10.1684/ejd.2008.0348 18424369
24. Lee HJ, Kim TG, Kim SH, Park JY, Lee M, Lee JW, et al. Epidermal Barrier Function Is Impaired in Langerhans Cell-Depleted Mice. J Invest Dermatol. 2019. doi: 10.1016/j.jid.2018.10.036 30448384
25. Han NR, Oh HA, Nam SY, Moon PD, Kim DW, Kim HM, et al. TSLP induces mast cell development and aggravates allergic reactions through the activation of MDM2 and STAT6. J Invest Dermatol. 2014. doi: 10.1038/jid.2014.198 24751726
26. Leyva-Castillo JM, Hener P, Michea P, Karasuyama H, Chan S, Soumelis V, et al. Skin thymic stromal lymphopoietin initiates Th2 responses through an orchestrated immune cascade. Nat Commun. 2013. doi: 10.1038/ncomms3847 24284909
27. Nakajima S, Igyártó BZ, Honda T, Egawa G, Otsuka A, Hara-Chikuma M, et al. Langerhans cells are critical in epicutaneous sensitization with protein antigen via thymic stromal lymphopoietin receptor signaling. J Allergy Clin Immunol. 2012. doi: 10.1016/j.jaci.2012.01.063 22385635
28. Lewis JM, Bürgler CD, Freudzon M, Golubets K, Gibson JF, Filler RB, et al. Langerhans Cells Facilitate UVB-Induced Epidermal Carcinogenesis. J Invest Dermatol. 2015. doi: 10.1038/jid.2015.207 26053049
29. Modi BG, Neustadter J, Binda E, Lewis J, Filler RB, Roberts SJ, et al. Langerhans cells facilitate epithelial DNA damage and squamous cell carcinoma. Science (80-). 2012. doi: 10.1126/science.1211600 22223807
30. Cho JS, Pietras EM, Garcia NC, Ramos RI, Farzam DM, Monroe HR, et al. IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J Clin Invest. 2010. doi: 10.1172/JCI40891 20364087
31. Kang J, Malhotra N. Transcription Factor Networks Directing the Development, Function, and Evolution of Innate Lymphoid Effectors. Annu Rev Immunol. 2015. doi: 10.1146/annurev-immunol-032414-112025 25650177
32. Taveirne S, De Colvenaer V, Van Den Broeck T, Van Ammel E, Bennett CL, Taghon T, et al. Langerhans cells are not required for epidermal V 3 T cell homeostasis and function. J Leukoc Biol. 2011. doi: 10.1189/jlb.1010581 21486908
33. Shipman WD, Chyou S, Ramanathan A, Izmirly PM, Sharma S, Pannellini T, et al. A protective Langerhans cell keratinocyte axis that is dysfunctional in photosensitivity. Sci Transl Med. 2018. doi: 10.1126/scitranslmed.aap9527 30111646
34. Bobr A, Olvera-Gomez I, Igyarto BZ, Haley KM, Hogquist KA, Kaplan DH. Acute Ablation of Langerhans Cells Enhances Skin Immune Responses. J Immunol. 2010. doi: 10.4049/jimmunol.1001802 20855870
35. Clausen BE, Stoitzner P. Functional specialization of skin dendritic cell subsets in regulating T cell responses. Front Immunol. 2015. doi: 10.3389/fimmu.2015.00534 26557117
36. Hoeffel G, Wang Y, Greter M, See P, Teo P, Malleret B, et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J Exp Med. 2012. doi: 10.1084/jem.20120340 22565823
37. Obhrai JS, Oberbarnscheidt M, Zhang N, Mueller DL, Shlomchik WD, Lakkis FG, et al. Langerhans cells are not required for efficient skin graft rejection. J Invest Dermatol. 2008. doi: 10.1038/jid.2008.52 18337832
38. Igyarto BZ, Jenison MC, Dudda JC, Roers A, Müller W, Koni PA, et al. Langerhans Cells Suppress Contact Hypersensitivity Responses Via Cognate CD4 Interaction and Langerhans Cell-Derived IL-10. J Immunol. 2009. doi: 10.4049/jimmunol.0901884 19801524
39. Igyártó BZ, Haley K, Ortner D, Bobr A, Gerami-Nejad M, Edelson BT, et al. Skin-Resident Murine Dendritic Cell Subsets Promote Distinct and Opposing Antigen-Specific T Helper Cell Responses. Immunity. 2011. doi: 10.1016/j.immuni.2011.06.005 21782478
Článok vyšiel v časopise
PLOS One
2020 Číslo 1
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Psychometric validation of Czech version of the Sport Motivation Scale
- Comparison of Monocyte Distribution Width (MDW) and Procalcitonin for early recognition of sepsis
- Effects of supplemental creatine and guanidinoacetic acid on spatial memory and the brain of weaned Yucatan miniature pigs
- Accelerated sparsity based reconstruction of compressively sensed multichannel EEG signals