#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Occurrence and distribution of anthropogenic persistent organic pollutants in coastal sediments and mud shrimps from the wetland of central Taiwan


Autoři: Shagnika Das aff001;  Andres Aria aff003;  Jing-O Cheng aff005;  Sami Souissi aff002;  Jiang-Shiou Hwang aff001;  Fung-Chi Ko aff005
Působiště autorů: Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan aff001;  University Lille, CNRS, University Littoral Cote d’Opale, UMR 8187, LOG, Laboratoire d’Océanologie et de Géosciences, Wimereux, France aff002;  Argentine Institute of Oceanography, Bahia Blanca, Argentina aff003;  National South University, Chemistry Department, Area III, Bahía Blanca, Argentina aff004;  National Museum of Marine Biology and Aquarium, Checheng, Pingtung, Taiwan aff005;  Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan aff006;  Institute of Marine Biology, National Dong-Hwa University, Pingtung, Taiwan aff007
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0227367

Souhrn

Sediment profile and mud shrimp (Austinogebia edulis) from the coastal wetland of central Taiwan in 2017 and 2018 were analyzed for concentration, source, and composition of persistent organic pollutants (POPs) including polycyclic aromatic hydrocarbon (PAHs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs; DDT and HCB), and polychlorinated biphenyls (PCBs). Sediment profiling indicated PAH concentrations reaching 254.38 ng/g dw in areas near industrial areas and PAH concentrations of 41.8 and 58.42 ng/g dw in sampling areas further from industrial areas, suggesting that the determining factor for spatial distribution of POPs might be proximity to contaminant sources in industrial zones. Based on molecular indices, PAHs were substantially of both pyrolytic and petrogenic origins. The main sources for PCBs were Aroclor 1016 and 1260 and the congener BDE-209 was the dominant component among PBDE congeners. While we were unable to obtain live mud shrimp samples from the heavily contaminated areas, in samples from less contaminated areas, the risk assessment on mud shrimp still illustrated a borderline threat, with DDT concentrations almost reaching standardized values of Effects Range-Low (ERL). Bioaccumulation factors for DDTs and PCBs (17.33 and 54.59, respectively) were higher than other POPs in this study. Further study is essential to assess and understand the impact of these chemicals on the wetland ecosystem near this heavily industrialized area.

Klíčová slova:

Shrimp – Contaminants – Sediment – Pollutants – Crabs – Petroleum – Combustion – DDT


Zdroje

1. Ramdine G., Fichet D., Louis M., Lemoine S., 2012. Polycyclic aromatic hydrocarbons (PAHs) in surface sediment and oysters (Crassostrea rhizophorae) from mangrove of Guadeloupe: levels, bioavailability, and effects. Ecotoxicol. Environ. Saf. 79, 80–89. https://doi.org/10.1016/j.ecoenv.2011.12.005 22209019

2. Ahmed M.M., Doumenq P., Awaleh M.O., Syaktib A.D., Asia L., Chiron S., 2017. Levels and sources of heavy metals and PAHs in sediment of Djibouti-city (Republic of Djibouti). Mar. Pollut. Bull. 120, 340–346. https://doi.org/10.1016/j.marpolbul.2017.05.055 28550950

3. Nascimento R.A., Almeida M., Escobar N.C.F., Ferreira S.L.C., Mortatti J., Queiroz A.F.S., 2017. Sources and distribution of polycyclic aromatic hydrocarbons (PAHs) and organic matter in surface sediments of an estuary under petroleum activity influence, Todosos Santos Bay, Brazil. Mar. Pollut. Bull. 119, 223–230. https://doi.org/10.1016/j.marpolbul.2017.03.069 28454763

4. Ramzi A., Habeeb R.K., Gireeshkumar T.R., Balachandran K.K., Chandramohanakumar N., 2017. Dynamics of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of Cochin estuary, India. Mar. Pollut. Bull. 114, 1081–1087. https://doi.org/10.1016/j.marpolbul.2016.10.015 27729110

5. Denis E.H., Toney J.L., Tarozo R., Anderson R.S., Roach L.D., Huang Y., 2012. Polycyclic aromatic hydrocarbons (PAHs) in lake sediments record historic fire events: validation using HPLC-fluorescence detection. Org. Geochem. 45, 7–17. https://doi.org/10.1016/j.orggeochem.2012.01.005

6. Bayen S., 2012. Occurrence, bioavailability and toxic effects of trace metals and organic contaminants in mangrove ecosystems: a review. Environ. Int. 48, 84–101. https://doi.org/10.1016/j.envint.2012.07.008 22885665

7. Cao Q.M., Wang H., Qin J.Q, Chen G.Z., Zhang Y.B., 2015. Partitioning of PAHs in pore water from mangrove wetlands in Shantou, China. Ecotoxicol. Environ. Saf. 111, 42–47. https://doi.org/10.1016/j.ecoenv.2014.09.023 25450913

8. Fusi M., Beone G.M., Suciu N.A., Sacchi A., Trevisan M., Capri E., Daffonchio D., Din N., Dahdouh-Guebas F., Cannicci S., 2016. Ecological status and sources of anthropogenic contaminants in mangroves of the Wouri River estuary (Cameroon). Mar. Pollut. Bull. 109, 723–733. https://doi.org/10.1016/j.marpolbul.2016.06.104 27394634

9. Tongo I., Ezemonye L., Akpeh K., 2017. Levels, distribution and characterization of polycyclic aromatic hydrocarbons (PAHs) in Ovia River, southern Nigeria. J. Environ. Chem. Eng. 5, 504–512. https://doi.org/10.1016/j.jece.2016.12.035

10. Yuan H., Liu E., Zhang E., Luo W., Chen L., Wang C., Lin Q., 2017. Historical records and sources of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in sediment from a representative plateau lake, China. Chemosphere 173, 78–88. https://doi.org/10.1016/j.chemosphere.2017.01.047 28110018

11. Huang Y., Liu M., Wang R., Khan S.K., Gao D., Zhang Y., 2017. Characterization and source apportionment of PAHs from a highly urbanized river sediments based on land use analysis. Chemosphere 184, 1334–1345. https://doi.org/10.1016/j.chemosphere.2017.06.117 28679154

12. Chapman P., Reed D., 2006. Advances in coastal habitat restoration in the northern Gulf of Mexico. Ecol Eng. 26, 1–5. https://doi.org/10.1016/j.ecoleng.2005.09.003

13. Wright J., Williams S., Dethier M., 2004. No zone is always greener: Variation in the performance of Fucus gardneri embryos, juveniles and adults across tidal zone and season. Mar Biol. 145, 1061–1073. https://doi.org/10.1007/s00227-004-1399-2

14. Das S., Tseng L.C., Chou C., Wang L., Souissi S., Hwang J.S., 2018. Effects of cadmium exposure on antioxidant enzymes and histological changes in the mud shrimp Austinogebia edulis (Crustacea: Decapoda). Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-018-04113-x

15. Das S., Tseng L.C., Wang L., Hwang J.S., 2017. Burrow characteristics of the mud shrimp Austinogebia edulis, an ecological engineer causing sediment modification of a tidal flat. PLoS ONE. 12(12): e0187647. https://doi.org/10.1371/journal.pone.0187647 29236717

16. Liou M.L., Yeh S.C., Ling Y.C., Chen C.M., 2006. The Need for Strategic Environmental Assessment of Fishery Products Regulations in the Taiwan Strait: Taking Health Perspectives of Organochlorine Pesticides in Seafood as an Example. Human and Ecological Risk Assessment: An International Journal. 12(2), 390–401. https://doi.org/10.1080/10807030500536827

17. Doong R.A., Lin Y.L., 2004. Characterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-ping River, Taiwan. Water Res. 38, 1733–1744. https://doi.org/10.1016/j.watres.2003.12.042 15026227

18. Fang M.D., Ko F.C., Baker J.E., Lee C.L., 2008. Seasonality of diffusive exchange of polychlorinated biphenyls and hexachlorobenzene across the air–sea interface of Kaohsiung Harbor, Taiwan. Sci. Total Environ. 407, 548–565. https://doi.org/10.1016/j.scitotenv.2008.09.021 18977513

19. Jiang J.J., Lee C.L., Fang M.D., Ko F.C., Baker J.E., 2011. Polybrominated diphenyl ethers and polychlorinated biphenyls in sediments of Southwest Taiwan: regional characteristics and potential sources. Mar. Pollut. Bull. 62, 815–823. https://doi.org/10.1016/j.marpolbul.2010.12.019 21269652

20. Cheng J.O., Cheng Y.M., Chen T.H., Hsieh P.C., Fang M.D., Lee C.L., Ko F.C., 2010. A preliminary assessment of polycyclic aromatic hydrocarbon distribution in the Kenting Coral Reef waters of Southern Taiwan. Arch. Environ. Contam. Toxicol. 58, 489–98. https://doi.org/10.1007/s00244-009-9411-y 19855915

21. Cheng J.O., Ko F.C., Li J.J., Chen T.H., Cheng Y.M., Lee C.L., 2012. Concentrations of polycyclic aromatic hydrocarbon in the surface sediments from inter tidal areas of Kenting coast, Taiwan. Environ. Monit. Assess. 184, 3481–3490. https://doi.org/10.1007/s10661-011-2202-8 21701885

22. Hung C.C., Gong G.C., Jiann K.T., Yeager K.M., Santschi P.H., Wade T.L., Sericano J.L., Hsieh H.L., 2006. Relationship between carbonaceous materials and polychlorinated biphenyls (PCBs) in the sediments of the Danshui River and adjacent coastal areas, Taiwan. Chemosphere. 65, 1452–146. https://doi.org/10.1016/j.chemosphere.2006.04.037 16757014

23. Hung C.-C., Gong G.-C., Chen H.-Y., Hsieh H.-L., Santschi P.H., Wade T.L., Sericano J.L., 2007. Relationships between pesticides and organic carbon fractions in sediments of the Danshui River estuary and adjacent coastal areas of Taiwan. Environ. Pollut. 148, 546–554. https://doi.org/10.1016/j.envpol.2006.11.036 17395347

24. Hung C.-C., Gong G.-C., Ko F.-C., Chen H.-Y., Hsu M.-L., Wu J.-M., Peng S.-C., Nan F.-H., Yeager K.M., Santschi P.H., 2010. Relationships between persistent organic pollutants and carbonaceous materials in aquatic sediments of Taiwan. Mar. Pollut. Bull. 60, 1010–1017. https://doi.org/10.1016/j.marpolbul.2010.01.026 20206366

25. Cheng J.O., Ko F.C., 2018. Occurrence of PBDEs in surface sediments of metropolitan rivers: Sources, distribution pattern, and risk assessment. Sci. Total Environ. 637–638, 1578–1585. https://doi.org/10.1016/j.scitotenv.2018.05.075 29801251

26. Yeh H.C., Chen I.M., Chen P., Wang W.H., 2009. Heavy metal concentrations of the soldier crab (Mictyris brevidactylus) along the inshore area of Changhua, Taiwan. Environ Monit Assess. 153, 103–109. https://doi.org/10.1007/s10661-008-0340-4 18600467

27. Chen Y.C., Chiang H.C., Hsu C.Y., Yang T.T., Lin T.Y., Chen M.J., Chen N.T., Wu Y.S., 2016. Ambient PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Changhua County, central Taiwan: Seasonal variation, source apportionment and cancer risk assessment. Environ Pollut. 218:372–382. https://doi.org/10.1016/j.envpol.2016.07.016. 27423500

28. Hsu C.Y., Chiang H.C., Lin S.L., Chen M.J., Lin T.Y., Chen Y.-C., 2016. Elemental characterization and source apportionment of PM10 and PM2.5 in the western coastal area of central Taiwan. Sci. Total Environ. 541, 1139–1150. https://doi.org/10.1016/j.scitotenv.2015.09.122 26473714

29. Chau K.W., 2006. Persistent organic pollution characterization of sediments in Pearl River estuary. Chemosphere 64, 1545–1549. https://doi.org/10.1016/j.chemosphere.2005.11.060 16403562

30. Adeleye A.O., Jin H., Di Y., Li D., Chen J., Ye Y., 2016. Distribution and ecological risk of organic pollutants in the sediments and seafood of Yangtze Estuary and Hangzhou Bay, East China Sea. Sci. Total Environ. 541, 1540–1548. https://doi.org/10.1016/j.scitotenv.2015.09.124 26479920

31. Connell D.W., Wu R.S.S., Richardson B.J., Leung K., Lam P.S.K., Connell P.A., 1998. Fate and risk evaluation of persistent organic contaminants and related compounds in Victoria Harbour, Hong Kong. Chemosphere. 36, 2019–2030. https://doi.org/10.1016/S0045-6535(97)10087-X 9532729

32. Wurl O., Obbard J.P., 2005. Organochlorine pesticides, polychlorinated biphenyls and polybrominated diphenyl ethers in Singapore’s coastal marine sediments. Chemosphere 58, 925–933. https://doi.org/10.1016/j.chemosphere.2004.09.054 15639264

33. Hong S.H., Yim U.H., Shim W.J., Li D.H., Oh J.R., 2006. Nationwide monitoring of polychlorinated biphenyls and organochlorine pesticides in sediments from coastal environment of Korea. Chemosphere 64, 1479–1488. https://doi.org/10.1016/j.chemosphere.2005.12.056 16480756

34. Doong R.A., Lee S.H., Lee C.C., Sun Y.C., Wu S.C., 2008. Characterization and composition of heavy metals and persistent organic pollutants in water and estuarine sediments from Gao-ping River, Taiwan. Mar. Pollut. Bull. 57, 846–857. https://doi.org/10.1016/j.marpolbul.2007.12.015 18289608

35. Guzzella L., Roscioli C., Vigano `L., Saha M., Sarkar S.K., Bhattacharya A., 2005. Evaluation of the concentration of HCH, DDT, HCB, PCB and PAH in the sediments along the lower stretch of Hugli estuary, West Bengal, northeast India. Environ Int. 31, 523–534. https://doi.org/10.1016/j.envint.2004.10.014 15788193

36. Binelli A., Sarkar S.K., Chatterjee M., Riva C., Parolini M., Bhattacharya B., Bhattacharya A.K., Satpathy K.K., 2008. A comparison of sediment quality guidelines for toxicity assessment in the Sunderban wetlands (Bay of Bengal, India). Chemosphere 73, 1129–1137. https://doi.org/10.1016/j.chemosphere.2008.07.019 18718633

37. Sarkar A., Nagarajan R., Chaphadkar S., Pal S., Singbal S.Y.S., 1997. Contamination of organochlorine pesticides in sediments from the Arabian Sea along the west coast of India. Water Res. 31, 195–200. https://doi.org/10.1016/S0043-1354(96)00210-2

38. Bartolomé L., Tueros I., Cortazar E., Raposo J.C., Sanz J., Zuloaga O., de Diego A., Etxebarria N., Fernández L.A., Madariaga J.M., 2006. Distribution of trace organic contaminants and total mercury in sediments from the Bilbao and Urdaibai Estuaries (Bay of Biscay). Mar. Pollut. Bull. 52, 1111–111. https://doi.org/10.1016/j.marpolbul.2006.05.024 16842824

39. Pikkarainen A.L., 2007. Polychlorinated biphenyls and organochlorine pesticides in Baltic Sea sediments and bivalves. Chemosphere 68, 17–24. https://doi.org/10.1016/j.chemosphere.2006.12.079 17291563

40. Sánchez-Avila J., Vicente J., Echavarri-Erasun B., Porte C., Tauler R., Lacorte S., 2013. Sources, fluxes and risk of organic micropollutants to the Cantabrian Sea (Spain). Mar. Pollut. Bull. 72, 119–132. https://doi.org/10.1016/j.marpolbul.2013.04.010 23673206

41. Pereira W.E., Hostettler F.D., Rapp J.B., 1996. Distribution and fate of chlorinated insecticides, biomarkers and polycyclic aromatic hydrocarbons in sediments along a contamination gradient from a point source in San Francisco Bay, California. Mar Environ Res. 41, 299–314.

42. Whitall D., Mason A., Pait A., Brune L., Fulton M., Wirth E., Vandiver L., 2014. Organic and metal contamination in marine surface sediments of guanica bay, Puerto Rico. Mar. Pollut. Bull. 80, 293–301. https://doi.org/10.1016/j.marpolbul.2013.12.053 24447634

43. Tombesi N., Pozo K., Álvarez M., Přibylová P., Kukučka P., Audy O., Klánová J., 2017. Tracking polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in sediments and soils from the southwest of Buenos Aires Province, Argentina (South eastern part of the GRULAC region). Sci Total Environ. 575, 1470–1476. https://doi.org/10.1016/j.scitotenv.2016.10.013 27780594

44. Mai B.X., Chen S.J., Luo X.J., Chen L.G., Yang Q.S., Sheng G.Y., Peng P.G., Fu J., Zeng E.Y., 2005. Distribution of polybrominated diphenyl ethers in sediments of the Pearl River Delta and adjacent South China Sea, Environ. Sci. Technol. 39, 3521–3527. https://doi.org/10.1021/es048083x

45. Yunker M. B., Macdonald R. W., Vingarzan R., Mitchell R. H., Goyette D., Sylvestre S., 2002. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 33(4), 489–515. https://doi.org/10.1016/s0146-6380(02)00002-5

46. Budzinski H., Jones I., Bellocq J., Piérard C., Garrigues P., 1997. Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar Chem. 58(1–2), 85–97. https://doi.org/10.1016/s0304-4203(97)00028-5

47. Golobočanin D. D., Škrbić B. D., Miljević N. R., 2004. Principal component analysis for soil contamination with PAHs. Chemometr Intell Lab Syst. 72(2), 219–223. https://doi.org/10.1016/j.chemolab.2004.01.017

48. Khalili N. R., Scheff P. A., Holsen T. M., 1995. PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions. Atmos. Environ. 29(4), 533–542. https://doi.org/10.1016/1352-2310(94)00275-p

49. Duval, M.M., Friedlander, S.K., 1981. Source resolution of polycyclic aromatic hydrocarbons in the Los Angeles atmosphere: application of a chemical species balance method with first order chemical decay. Final report Jan-Dec 80. United States.

50. World Health Organisation handbook, 1979; WHO Offset, publication No. 48.

51. Yuan D., Yang D., Wade T. L., Qian Y., 2001. Status of persistent organic pollutants in the sediment from several estuaries in China. Environ. Pollut. 114(1), 101–111. https://doi.org/10.1016/s0269-7491(00)00200-1 11443998

52. Doong R.A., Peng C.K., Sun Y.C., Liao P.L., 2002. Composition and distribution of organochlorine pesticide residues in surface sediments from Wu-shi River estuary, Taiwan. Mar Pollut Bull. 45, 246–53. https://doi.org/10.1016/S0025-326X(02)00102-9 12398392

53. Moon H.-B., Kannan K., Lee S.-J., Choi M., 2007. Polybrominated diphenyl ethers (PBDEs) in sediment and bivalves from Korean coastal waters. Chemosphere 66, 243–251. https://doi.org/10.1016/j.chemosphere.2006.05.025 16814845

54. Voorspoels S., Covaci A., Maervoet J., De Meester I., Schepens P., 2004. Levels and profiles of PCBs and OCPs in marine benthic species from the Belgian North Sea and the Western Scheldt Estuary. Mar. Pollut. Bull. 49(5–6), 393–404. https://doi.org/10.1016/j.marpolbul.2004.02.024 15325207

55. Yang H., Xue B., Jin L., Zhou S., Liu W., 2011. Polychlorinated biphenyls in surface sediments of Yueqing Bay, Xiangshan Bay, and Sanmen Bay in East China Sea. Chemosphere 83, 137–143. https://doi.org/10.1016/j.chemosphere.2010.12.070 21220150

56. Gao S., Chen J., Shen Z., Liu H., Chen Y., 2013. Seasonal and spatial distributions and possible sources of polychlorinated biphenyls in surface sediments of Yangtze Estuary, China. Chemosphere. 91, 809–816. https://doi.org/10.1016/j.chemosphere.2013.01.085 23434079

57. Lee H.J., An S., Kim G.B., 2014. Background level and composition of polybrominated diphenyl ethers (PBDEs) in creek and subtidal sediments in a rural area of Korea. Sci. Total Environ. 470, 1479–1484. https://doi.org/10.1016/j.scitotenv.2013.06.105 23870498

58. Wang X.T., Chen L., Wang X.K., Zhang Y., Zhou J., Xu S.Y., Sun Y.F., Wu M.H., 2015. Occurrence, profiles, and ecological risks of polybrominated diphenyl ethers (PBDEs) in river sediments of shanghai, China. Chemosphere. 133, 22–30. https://doi.org/10.1016/j.chemosphere.2015.02.064 25840411

59. Zhao G., Zhou H., Liu X., Li K., Zhang P., Wen W., Yu Y., 2012. PHAHs in 14 principal river sediments from Hai River basin, China. Sci. Total Environ. 427, 139–145. https://doi.org/10.1016/j.scitotenv.2012.04.001 22560245

60. Long E. R., Macdonald D. D., Smith S. L., Calder F. D., 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manage, 19(1), 81–97. https://doi.org/10.1007/bf02472006

61. CCME., 2002. Guidance on the site-specific application of water quality guidelines in Canada: procedures for deriving numerical water quality objectives. Winnipeg, Manitoba.

62. Hawker D. W., Connell D. W., 1985. Relationships between partition coefficient, uptake rate constant, clearance rate constant and time to equilibrium for bioaccumulation. Chemosphere. 14(9), 1205–1219. https://doi.org/10.1016/0045-6535(85)90142-0

63. Froese K. L., Verbrugge D. A., Ankley G. T., Niemi G. J., Larsen C. P., Giesy J. P., 1998. Bioaccumulation of polychlorinated biphenyls from sediments to aquatic insects and tree swallow eggs and nestlings in Saginaw Bay, Michigan, USA. Environ Toxicol Chem. 17(3), 484–492. https://doi.org/10.1002/etc.5620170320

64. Nakata H., Sakai Y., Miyawaki T., Takemura A., 2003. Bioaccumulation and Toxic Potencies of Polychlorinated Biphenyls and Polycyclic Aromatic Hydrocarbons in Tidal Flat and Coastal Ecosystems of the Ariake Sea, Japan. Environ. Sci. Technol. 37(16), 3513–3521. https://doi.org/10.1021/es021083h 12953860

65. Iannuzzi J., Butcher M., Iannuzzi T., 2011. Evaluation of potential relationships between chemical contaminants in sediments and aquatic organisms from the lower Passaic River, New Jersey, USA. Environ Toxicol Chem. 30: 1721–8. doi: 10.1002/etc.550 21520249

66. Chang G.R., 2017. Persistent organochlorine pesticides in aquatic environments and fishes in Taiwan and their risk assessment. Environ Sci Pollut Res Int. 25(8), 7699–7708. https://doi.org/10.1007/s11356-017-1110-z 29288298

67. Van Ael E., Covaci A., Blust R., Bervoets L., 2012. Persistent organic pollutants in the Scheldt estuary: Environmental distribution and bioaccumulation. Environ Int. 48, 17– https://doi.org/27.10.1016/j.envint.2012.06.017 22832186

68. De Bruyn A.M.H., Meloche L.M., Lowe C.J., 2009. Patterns of bioaccumulation of polybrominated diphenyl ether and polychlorinated biphenyl congeners in marine mussels. Environ Sci Technol. 43, 3700–4.449. https://doi.org/10.1016/j.ibiod.2008.12.005 19544876

69. Baumard P., Budzinski H., Garrigues P., 1998. Polycyclic aromatic hydrocarbons in sediments and mussels of the western Mediterranean sea. Environ. Toxicol. Chem. 17(5), https://doi.org/765–776.10.1002/etc.5620170501


Článok vyšiel v časopise

PLOS One


2020 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#