Amnestic mild cognitive impairment in Parkinson’s disease: White matter structural changes and mechanisms
Autoři:
Fuyong Chen aff001; Tao Wu aff004; Yuejia Luo aff006; Zhihao Li aff006; Qing Guan aff006; Xianghong Meng aff001; Wei Tao aff001; Haobo Zhang aff006
Působiště autorů:
Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong Province, China
aff001; Shenzhen University Clinical Research Center for Neurological Diseases, Shenzhen, Guangdong Province, China
aff002; Department of Neurosurgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
aff003; Department of Neurology, National Clinical Research Center for Geriatric Disorders, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China
aff004; Beijing Key Laboratory on Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China
aff005; School of Psychology, Shenzhen University, Shenzhen, Guangdong Province, China
aff006; Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen, Guangdong Province, China
aff007; Center for Emotion and Brain, Shenzhen Institute of Neuroscience, Shenzhen, Guangdong Province, China
aff008
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0226175
Souhrn
Mild cognitive impairment (MCI) is a heterogeneous cognitive disorder that is often comorbid with Parkinson’s diseases (PD). The amnestic subtype of PD-MCI (PD-aMCI) has a higher risk to develop dementia. However, there is a lack of studies on the white matter (WM) structural changes of PD-aMCI. We characterized the WM structural changes of PD-aMCI (n = 17) with cognitively normal PD (PD-CN, n = 19) and normal controls (n = 20), using voxel-based and tract-based spatial statistics (TBSS) analyses on fractional anisotropy (FA) axial diffusivity (AD), and radial diffusivity (RD). By excluding and then including the motor performance as a covariate in the comparison analysis between PD-aMCI and PD-CN, we attempted to discern the influences of two neuropathological mechanisms on the WM structural changes of PD-aMCI. The correlation analyses between memory and voxel-based WM measures in all PD patients were also performed (n = 36). The results showed that PD-aMCI had smaller FA values than PD-CN in the diffuse WM areas, and PD-CN had higher AD and RD values than normal controls in the right caudate. Most FA difference between PD-aMCI and PD-CN could be weakened by the motor adjustment. The FA differences between PD-aMCI and PD-CN were largely spatially overlapped with the memory-correlated FA values. Our findings demonstrated that the WM structural differences between PD-aMCI and PD-CN were mainly memory-related, and the influence of motor adjustment might indicate a common mechanism underlying both motor and memory impairment in PD-aMCI, possibly reflecting a predominant influence of dopaminergic neuropathology.
Klíčová slova:
corpus callosum – Cognitive impairment – Alzheimer's disease – Memory – Diffusion tensor imaging – Attention – Dopaminergics – Parkinson disease
Zdroje
1. Aarsland D, Bronnick K, Williams-Gray C, Weintraub D, Marder K, Kulisevsky J, et al. Mild cognitive impairment in Parkinson disease: a multicenter pooled analysis. Neurology. 2010;75(12):1062–9. doi: 10.1212/WNL.0b013e3181f39d0e 20855849; PubMed Central PMCID: PMC2942065.
2. Mak E, Su L, Williams GB, O'Brien JT. Neuroimaging correlates of cognitive impairment and dementia in Parkinson's disease. Parkinsonism & related disorders. 2015;21(8):862–70. doi: 10.1016/j.parkreldis.2015.05.013 26004683.
3. Zhang H, Sachdev PS, Wen W, Kochan NA, Crawford JD, Brodaty H, et al. Gray matter atrophy patterns of mild cognitive impairment subtypes. Journal of the neurological sciences. 2012;315(1–2):26–32. doi: 10.1016/j.jns.2011.12.011 22280946.
4. Barker RA, Williams-Gray CH. Mild cognitive impairment and Parkinson's disease—something to remember. Journal of Parkinson's disease. 2014;4(4):651–6. doi: 10.3233/JPD-140427 25147139.
5. Kalbe E, Rehberg SP, Heber I, Kronenbuerger M, Schulz JB, Storch A, et al. Subtypes of mild cognitive impairment in patients with Parkinson's disease: evidence from the LANDSCAPE study. Journal of neurology, neurosurgery, and psychiatry. 2016;87(10):1099–105. doi: 10.1136/jnnp-2016-313838 27401782.
6. Christopher L, Strafella AP. Neuroimaging of brain changes associated with cognitive impairment in Parkinson's disease. Journal of neuropsychology. 2013;7(2):225–40. Epub 2013/04/05. doi: 10.1111/jnp.12015 23551844; PubMed Central PMCID: PMC4452222.
7. Hanganu A, Monchi O. Structural Neuroimaging Markers of Cognitive Decline in Parkinson's Disease. Parkinson's disease. 2016;2016:3217960. Epub 2016/05/18. doi: 10.1155/2016/3217960 27190672; PubMed Central PMCID: PMC4848447.
8. Lin CH, Wu RM. Biomarkers of cognitive decline in Parkinson's disease. Parkinsonism & related disorders. 2015;21(5):431–43. doi: 10.1016/j.parkreldis.2015.02.010 25737398.
9. Lee JE, Park HJ, Song SK, Sohn YH, Lee JD, Lee PH. Neuroanatomic basis of amnestic MCI differs in patients with and without Parkinson disease. Neurology. 2010;75(22):2009–16. doi: 10.1212/WNL.0b013e3181ff96bf 21115956.
10. Agosta F, Canu E, Stefanova E, Sarro L, Tomic A, Spica V, et al. Mild cognitive impairment in Parkinson's disease is associated with a distributed pattern of brain white matter damage. Human brain mapping. 2014;35(5):1921–9. doi: 10.1002/hbm.22302 23843285.
11. Deng B, Zhang Y, Wang L, Peng K, Han L, Nie K, et al. Diffusion tensor imaging reveals white matter changes associated with cognitive status in patients with Parkinson's disease. American journal of Alzheimer's disease and other dementias. 2013;28(2):154–64. doi: 10.1177/1533317512470207 23271331.
12. Hattori T, Orimo S, Aoki S, Ito K, Abe O, Amano A, et al. Cognitive status correlates with white matter alteration in Parkinson's disease. Human brain mapping. 2012;33(3):727–39. doi: 10.1002/hbm.21245 21495116.
13. Melzer TR, Watts R, MacAskill MR, Pitcher TL, Livingston L, Keenan RJ, et al. White matter microstructure deteriorates across cognitive stages in Parkinson disease. Neurology. 2013;80(20):1841–9. doi: 10.1212/WNL.0b013e3182929f62 23596076.
14. Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics. 2007;4(3):316–29. doi: 10.1016/j.nurt.2007.05.011 17599699; PubMed Central PMCID: PMC2041910.
15. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage. 2006;31(4):1487–505. doi: 10.1016/j.neuroimage.2006.02.024 16624579.
16. van Hecke W, Emsell L, Sunaert S. Diffusion tensor imaging: a practical handbook. New York: Springer-Verlag; 2016.
17. Weingarten CP, Sundman MH, Hickey P, Chen NK. Neuroimaging of Parkinson's disease: Expanding views. Neuroscience and biobehavioral reviews. 2015;59:16–52. doi: 10.1016/j.neubiorev.2015.09.007 26409344; PubMed Central PMCID: PMC4763948.
18. Braak H, Del Tredici K. Neuropathological Staging of Brain Pathology in Sporadic Parkinson's disease: Separating the Wheat from the Chaff. Journal of Parkinson's disease. 2017;7(s1):S73–S87. doi: 10.3233/JPD-179001 28282810; PubMed Central PMCID: PMC5345633.
19. Nieuwhof F, Bloem BR, Reelick MF, Aarts E, Maidan I, Mirelman A, et al. Impaired dual tasking in Parkinson's disease is associated with reduced focusing of cortico-striatal activity. Brain: a journal of neurology. 2017;140(5):1384–98. doi: 10.1093/brain/awx042 28335024.
20. Kehagia AA, Barker RA, Robbins TW. Cognitive impairment in Parkinson's disease: the dual syndrome hypothesis. Neuro-degenerative diseases. 2013;11(2):79–92. doi: 10.1159/000341998 23038420; PubMed Central PMCID: PMC5079071.
21. Compta Y, Parkkinen L, O'Sullivan SS, Vandrovcova J, Holton JL, Collins C, et al. Lewy- and Alzheimer-type pathologies in Parkinson's disease dementia: which is more important? Brain: a journal of neurology. 2011;134(Pt 5):1493–505. doi: 10.1093/brain/awr031 21596773; PubMed Central PMCID: PMC4194668.
22. Kraemer HC, Stice E, Kazdin A, Offord D, Kupfer D. How do risk factors work together? Mediators, moderators, and independent, overlapping, and proxy risk factors. The American journal of psychiatry. 2001;158(6):848–56. doi: 10.1176/appi.ajp.158.6.848 11384888.
23. Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. Journal of neurology, neurosurgery, and psychiatry. 1992;55(3):181–4. doi: 10.1136/jnnp.55.3.181 1564476; PubMed Central PMCID: PMC1014720.
24. Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. Neurology. 1967;17(5):427–42. doi: 10.1212/wnl.17.5.427 6067254.
25. Goetz CG, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, Stebbins GT, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): Process, format, and clinimetric testing plan. Movement disorders: official journal of the Movement Disorder Society. 2007;22(1):41–7. doi: 10.1002/mds.21198 17115387.
26. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th edition, International Version (DSM-IV). Washington DC: American Psychiatric Association; 1995.
27. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98. Epub 1975/11/01. 0022-3956(75)90026-6 [pii]. doi: 10.1016/0022-3956(75)90026-6 1202204.
28. Zhang BH, Tan YL, Zhang WF, Wang ZR, Yang GG, Shi C, et al. Repeatable Battery for the Assessment of Neuropsychological Status as a Screening Test in Chinese: Reliability and Validity. Chinese Mental Health Journal. 2008;22(12):865–9.
29. Randolph C, Tierney MC, Mohr E, Chase TN. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): preliminary clinical validity. Journal of clinical and experimental neuropsychology. 1998;20(3):310–9. doi: 10.1076/jcen.20.3.310.823 9845158.
30. Litvan I, Goldman JG, Troster AI, Schmand BA, Weintraub D, Petersen RC, et al. Diagnostic criteria for mild cognitive impairment in Parkinson's disease: Movement Disorder Society Task Force guidelines. Movement disorders: official journal of the Movement Disorder Society. 2012;27(3):349–56. doi: 10.1002/mds.24893 22275317; PubMed Central PMCID: PMC3641655.
31. Collinson SL, Fang SH, Lim ML, Feng L, Ng TP. Normative data for the repeatable battery for the assessment of neuropsychological status in elderly Chinese. Archives of clinical neuropsychology: the official journal of the National Academy of Neuropsychologists. 2014;29(5):442–55. doi: 10.1093/arclin/acu023 24903208.
32. Nichols T, Brett M, Andersson J, Wager T, Poline JB. Valid conjunction inference with the minimum statistic. NeuroImage. 2005;25(3):653–60. doi: 10.1016/j.neuroimage.2004.12.005 15808966.
33. Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. Permutation inference for the general linear model. NeuroImage. 2014;92:381–97. doi: 10.1016/j.neuroimage.2014.01.060 24530839; PubMed Central PMCID: PMC4010955.
34. Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage. 2009;44(1):83–98. doi: 10.1016/j.neuroimage.2008.03.061 18501637.
35. Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophysical journal. 1994;66(1):259–67. doi: 10.1016/S0006-3495(94)80775-1 8130344; PubMed Central PMCID: PMC1275686.
36. Beaulieu C. The basis of anisotropic water diffusion in the nervous system—a technical review. NMR in biomedicine. 2002;15(7–8):435–55. doi: 10.1002/nbm.782 12489094.
37. Douet V, Chang L. Fornix as an imaging marker for episodic memory deficits in healthy aging and in various neurological disorders. Frontiers in aging neuroscience. 2014;6:343. doi: 10.3389/fnagi.2014.00343 25642186; PubMed Central PMCID: PMC4294158.
38. Metzler-Baddeley C, Jones DK, Belaroussi B, Aggleton JP, O'Sullivan MJ. Frontotemporal connections in episodic memory and aging: a diffusion MRI tractography study. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2011;31(37):13236–45. doi: 10.1523/JNEUROSCI.2317-11.2011 21917806.
39. Kantarci K, Senjem ML, Avula R, Zhang B, Samikoglu AR, Weigand SD, et al. Diffusion tensor imaging and cognitive function in older adults with no dementia. Neurology. 2011;77(1):26–34. doi: 10.1212/WNL.0b013e31822313dc 21593440; PubMed Central PMCID: PMC3127333.
40. Zheng Z, Shemmassian S, Wijekoon C, Kim W, Bookheimer SY, Pouratian N. DTI correlates of distinct cognitive impairments in Parkinson's disease. Human brain mapping. 2014;35(4):1325–33. doi: 10.1002/hbm.22256 PubMed Central PMCID: PMC3664116. 23417856
41. Tanner JJ, Mareci TH, Okun MS, Bowers D, Libon DJ, Price CC. Temporal Lobe and Frontal-Subcortical Dissociations in Non-Demented Parkinson's Disease with Verbal Memory Impairment. PloS one. 2015;10(7):e0133792. doi: 10.1371/journal.pone.0133792 26208170; PubMed Central PMCID: PMC4514873.
42. Lucas-Jimenez O, Diez-Cirarda M, Ojedaa N, Pena J, Cabrera-Zubizarreta A, Ibarretxe-Bilbao N. Verbal Memory in Parkinson's Disease: A Combined DTI and fMRI Study. Journal of Parkinson's disease. 2015;5(4):793–804. doi: 10.3233/JPD-150623 27070003; PubMed Central PMCID: PMC4927836.
43. Koay CG, Chang LC, Carew JD, Pierpaoli C, Basser PJ. A unifying theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor imaging. Journal of magnetic resonance. 2006;182(1):115–25. doi: 10.1016/j.jmr.2006.06.020 16828568.
44. Madden DJ, Bennett IJ, Burzynska A, Potter GG, Chen NK, Song AW. Diffusion tensor imaging of cerebral white matter integrity in cognitive aging. Biochimica et biophysica acta. 2012;1822(3):386–400. doi: 10.1016/j.bbadis.2011.08.003 21871957; PubMed Central PMCID: PMC3241892.
45. Cherubini A, Peran P, Spoletini I, Di Paola M, Di Iulio F, Hagberg GE, et al. Combined volumetry and DTI in subcortical structures of mild cognitive impairment and Alzheimer's disease patients. Journal of Alzheimer's disease: JAD. 2010;19(4):1273–82. doi: 10.3233/JAD-2010-091186 20308792.
46. Planetta PJ, Ofori E, Pasternak O, Burciu RG, Shukla P, DeSimone JC, et al. Free-water imaging in Parkinson's disease and atypical parkinsonism. Brain: a journal of neurology. 2016;139(Pt 2):495–508. doi: 10.1093/brain/awv361 26705348.
47. Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–81. doi: 10.1146/annurev.ne.09.030186.002041 3085570.
48. Kim HJ, Kim SJ, Kim HS, Choi CG, Kim N, Han S, et al. Alterations of mean diffusivity in brain white matter and deep gray matter in Parkinson's disease. Neuroscience letters. 2013;550:64–8. doi: 10.1016/j.neulet.2013.06.050 23831353.
49. Prodoehl J, Li H, Planetta PJ, Goetz CG, Shannon KM, Tangonan R, et al. Diffusion tensor imaging of Parkinson's disease, atypical parkinsonism, and essential tremor. Movement disorders: official journal of the Movement Disorder Society. 2013;28(13):1816–22. doi: 10.1002/mds.25491 23674400; PubMed Central PMCID: PMC3748146.
50. Sterling NW, Du G, Lewis MM, Dimaio C, Kong L, Eslinger PJ, et al. Striatal shape in Parkinson's disease. Neurobiology of aging. 2013;34(11):2510–6. doi: 10.1016/j.neurobiolaging.2013.05.017 23820588; PubMed Central PMCID: PMC3742686.
51. Bohnen NI, Albin RL, Muller ML, Petrou M, Kotagal V, Koeppe RA, et al. Frequency of cholinergic and caudate nucleus dopaminergic deficits across the predemented cognitive spectrum of Parkinson disease and evidence of interaction effects. JAMA neurology. 2015;72(2):194–200. doi: 10.1001/jamaneurol.2014.2757 25506674; PubMed Central PMCID: PMC5565160.
52. Pitcher TL, Melzer TR, Macaskill MR, Graham CF, Livingston L, Keenan RJ, et al. Reduced striatal volumes in Parkinson's disease: a magnetic resonance imaging study. Translational neurodegeneration. 2012;1(1):17. doi: 10.1186/2047-9158-1-17 23210661; PubMed Central PMCID: PMC3514123.
53. Garg A, Appel-Cresswell S, Popuri K, McKeown MJ, Beg MF. Morphological alterations in the caudate, putamen, pallidum, and thalamus in Parkinson's disease. Frontiers in neuroscience. 2015;9:101. doi: 10.3389/fnins.2015.00101 25873854; PubMed Central PMCID: PMC4379878.
54. Halliday GM, Leverenz JB, Schneider JS, Adler CH. The neurobiological basis of cognitive impairment in Parkinson's disease. Movement disorders: official journal of the Movement Disorder Society. 2014;29(5):634–50. doi: 10.1002/mds.25857 24757112; PubMed Central PMCID: PMC4049032.
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts