#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Association between IQ and FMR1 protein (FMRP) across the spectrum of CGG repeat expansions


Autoři: Kyoungmi Kim aff001;  David Hessl aff001;  Jamie L. Randol aff004;  Glenda M. Espinal aff004;  Andrea Schneider aff001;  Dragana Protic aff001;  Elber Yuksel Aydin aff001;  Randi J. Hagerman aff001;  Paul J. Hagerman aff001
Působiště autorů: UC Davis MIND Institute, UC Davis Health, Sacramento, California, United States of America aff001;  Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, California, United States of America aff002;  Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento, California, United States of America aff003;  Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California, United States of America aff004;  Department of Pediatrics, University of California, Davis, School of Medicine, Sacramento, California, United States of America aff005
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0226811

Souhrn

Fragile X syndrome, the leading heritable form of intellectual disability, is caused by hypermethylation and transcriptional silencing of large (CGG) repeat expansions (> 200 repeats) in the 5′ untranslated region of the fragile X mental retardation 1 (FMR1) gene. As a consequence of FMR1 gene silencing, there is little or no production of FMR1 protein (FMRP), an important element in normal synaptic function. Although the absence of FMRP has long been known to be responsible for the cognitive impairment in fragile X syndrome, the relationship between FMRP level and cognitive ability (IQ) is only imprecisely understood. To address this issue, a high-throughput, fluorescence resonance energy transfer (FRET) assay has been used to quantify FMRP levels in dermal fibroblasts, and the relationship between FMRP and IQ measures was assessed by statistical analysis in a cohort of 184 individuals with CGG-repeat lengths spanning normal (< 45 CGGs) to full mutation (> 200 CGGs) repeat ranges in fibroblasts. The principal findings of the current study are twofold: i) For those with normal CGG repeats, IQ is no longer sensitive to further increases in FMRP above an FMRP threshold of ~70% of the mean FMRP level; below this threshold, IQ decreases steeply with further decreases in FMRP; and ii) For the current cohort, a mean IQ of 85 (lower bound for the normal IQ range) is attained for FMRP levels that are only ~35% of the mean FMRP level among normal CGG-repeat controls. The current results should help guide expectations for efforts to induce FMR1 gene activity and for the levels of cognitive function expected for a given range of FMRP levels.

Klíčová slova:

Methylation – Point mutation – Cognitive impairment – Cognition – Fibroblasts – Regression analysis – Fluorescence resonance energy transfer – Fragile X syndrome


Zdroje

1. Hagerman RJ, Berry-Kravis E, Hazlett HC, Bailey DB Jr., Moine H, Kooy RF, et al. Fragile X syndrome. Nat Rev Dis Primers. 2017;3:17065. Epub 2017/09/30. doi: 10.1038/nrdp.2017.65 28960184

2. Mila M, Alvarez-Mora MI, Madrigal I, Rodriguez-Revenga L. Fragile X syndrome: An overview and update of the FMR1 gene. Clin Genet. 2018;93(2):197–205. Epub 2017/06/16. doi: 10.1111/cge.13075 28617938

3. Hagerman RJ, Protic D, Rajaratnam A, Salcedo-Arellano MJ, Aydin EY, Schneider A. Fragile X-Associated Neuropsychiatric Disorders (FXAND). Front Psychiatry. 2018;9:564. doi: 10.3389/fpsyt.2018.00564 30483160

4. Ramirez-Cheyne JA, Duque GA, Ayala-Zapata S, Saldarriaga-Gil W, Hagerman P, Hagerman R, et al. Fragile X syndrome and connective tissue dysregulation. Clin Genet. 2019;95(2):262–7. Epub 2018/11/11. doi: 10.1111/cge.13469 30414172

5. Pieretti M, Zhang FP, Fu YH, Warren ST, Oostra BA, Caskey CT, et al. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell. 1991;66(4):817–22. Epub 1991/08/23. doi: 10.1016/0092-8674(91)90125-i 1878973

6. Sutcliffe JS, Nelson DL, Zhang F, Pieretti M, Caskey CT, Saxe D, et al. DNA methylation represses FMR-1 transcription in fragile X syndrome. Hum Mol Genet. 1992;1(6):397–400. Epub 1992/09/01. doi: 10.1093/hmg/1.6.397 1301913

7. Devys D, Biancalana V, Rousseau F, Boue J, Mandel JL, Oberle I. Analysis of full fragile X mutations in fetal tissues and monozygotic twins indicate that abnormal methylation and somatic heterogeneity are established early in development. Am J Med Genet. 1992;43(1–2):208–16. Epub 1992/04/01. doi: 10.1002/ajmg.1320430134 1605193

8. Feng Y, Zhang F, Lokey LK, Chastain JL, Lakkis L, Eberhart D, et al. Translational suppression by trinucleotide repeat expansion at FMR1. Science. 1995;268(5211):731–4. Epub 1995/05/05. doi: 10.1126/science.7732383 7732383

9. Schaeffer C, Bardoni B, Mandel JL, Ehresmann B, Ehresmann C, Moine H. The fragile X mental retardation protein binds specifically to its mRNA via a purine quartet motif. EMBO J. 2001;20(17):4803–13. Epub 2001/09/05. doi: 10.1093/emboj/20.17.4803 11532944

10. Brown V, Jin P, Ceman S, Darnell JC, O'Donnell WT, Tenenbaum SA, et al. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell. 2001;107(4):477–87. doi: 10.1016/s0092-8674(01)00568-2 11719188

11. Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A, Fraser CE, et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell. 2011;146(2):247–61. doi: 10.1016/j.cell.2011.06.013 21784246

12. Maurin T, Lebrigand K, Castagnola S, Paquet A, Jarjat M, Popa A, et al. HITS-CLIP in various brain areas reveals new targets and new modalities of RNA binding by fragile X mental retardation protein. Nucleic Acids Res. 2018;46(12):6344–55. Epub 2018/04/19. doi: 10.1093/nar/gky267 29668986

13. Suhl JA, Chopra P, Anderson BR, Bassell GJ, Warren ST. Analysis of FMRP mRNA target datasets reveals highly associated mRNAs mediated by G-quadruplex structures formed via clustered WGGA sequences. Hum Mol Genet. 2014;23(20):5479–91. Epub 2014/05/31. doi: 10.1093/hmg/ddu272 24876161

14. Siomi H, Siomi M, Nussbaum R, Dreyfuss G. The protein product of the fragile X gene, FMR1, has characteristics of an RNA-binding protein. Cell. 1993;74(2):291–8. Epub 1993/07/30. doi: 10.1016/0092-8674(93)90420-u 7688265

15. Bardoni B, Schenck A, Mandel JL. The Fragile X mental retardation protein. Brain Res Bull. 2001;56(3–4):375–82. Epub 2001/11/24. doi: 10.1016/s0361-9230(01)00647-5 11719275

16. Zalfa F, Eleuteri B, Dickson KS, Mercaldo V, De Rubeis S, di Penta A, et al. A new function for the fragile X mental retardation protein in regulation of PSD-95 mRNA stability. Nat Neurosci. 2007;10(5):578–87. Epub 2007/04/10. doi: 10.1038/nn1893 17417632

17. Ascano M Jr., Mukherjee N, Bandaru P, Miller JB, Nusbaum JD, Corcoran DL, et al. FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature. 2012;492(7429):382–6. Epub 2012/12/14. doi: 10.1038/nature11737 23235829

18. Fernandez E, Rajan N, Bagni C. The FMRP regulon: from targets to disease convergence. Front Neurosci. 2013;7:191. Epub 2013/10/30. doi: 10.3389/fnins.2013.00191 24167470

19. Kenny P, Ceman S. RNA Secondary Structure Modulates FMRP's Bi-Functional Role in the MicroRNA Pathway. Int J Mol Sci. 2016;17(6). doi: 10.3390/ijms17060985

20. Sears JC, Broadie K. Fragile X Mental Retardation Protein Regulates Activity-Dependent Membrane Trafficking and Trans-Synaptic Signaling Mediating Synaptic Remodeling. Front Mol Neurosci. 2017;10:440. doi: 10.3389/fnmol.2017.00440 29375303

21. Banerjee A, Ifrim MF, Valdez AN, Raj N, Bassell GJ. Aberrant RNA translation in fragile X syndrome: From FMRP mechanisms to emerging therapeutic strategies. Brain Res. 2018;1693(Pt A):24–36. doi: 10.1016/j.brainres.2018.04.008 29653083

22. D'Annessa I, Cicconardi F, Di Marino D. Handling FMRP and its molecular partners: Structural insights into Fragile X Syndrome. Prog Biophys Mol Biol. 2019;141:3–14. doi: 10.1016/j.pbiomolbio.2018.07.001 30905341

23. Leboucher A, Pisani DF, Martinez-Gili L, Chilloux J, Bermudez-Martin P, Van Dijck A, et al. The translational regulator FMRP controls lipid and glucose metabolism in mice and humans. Mol Metab. 2019;21:22–35. doi: 10.1016/j.molmet.2019.01.002 30686771

24. Alpatov R, Lesch BJ, Nakamoto-Kinoshita M, Blanco A, Chen S, Stutzer A, et al. A chromatin-dependent role of the fragile X mental retardation protein FMRP in the DNA damage response. Cell. 2014;157(4):869–81. Epub 2014/05/13. doi: 10.1016/j.cell.2014.03.040 24813610

25. Dockendorff TC, Labrador M. The Fragile X Protein and Genome Function. Mol Neurobiol. 2019;56(1):711–21. Epub 2018/05/26. doi: 10.1007/s12035-018-1122-9 29796988

26. Contractor A, Klyachko VA, Portera-Cailliau C. Altered Neuronal and Circuit Excitability in Fragile X Syndrome. Neuron. 2015;87(4):699–715. Epub 2015/08/21. doi: 10.1016/j.neuron.2015.06.017 26291156

27. Ferron L. Fragile X mental retardation protein controls ion channel expression and activity. J Physiol. 2016;594(20):5861–7. Epub 2016/02/13. doi: 10.1113/JP270675 26864773

28. Castagnola S, Delhaye S, Folci A, Paquet A, Brau F, Duprat F, et al. New Insights Into the Role of Cav2 Protein Family in Calcium Flux Deregulation in Fmr1-KO Neurons. Front Mol Neurosci. 2018;11:342. Epub 2018/10/16. doi: 10.3389/fnmol.2018.00342 30319351

29. Hessl D, Rivera SM, Reiss AL. The neuroanatomy and neuroendocrinology of fragile X syndrome. Ment Retard Dev Disabil Res Rev. 2004;10(1):17–24. Epub 2004/03/03. doi: 10.1002/mrdd.20004 14994284

30. Gothelf D, Furfaro JA, Hoeft F, Eckert MA, Hall SS, O'Hara R, et al. Neuroanatomy of fragile X syndrome is associated with aberrant behavior and the fragile X mental retardation protein (FMRP). Ann Neurol. 2008;63(1):40–51. Epub 2007/10/13. doi: 10.1002/ana.21243

31. Swanson MR, Wolff JJ, Shen MD, Styner M, Estes A, Gerig G, et al. Development of White Matter Circuitry in Infants With Fragile X Syndrome. JAMA psychiatry. 2018;75(5):505–13. Epub 2018/04/05. doi: 10.1001/jamapsychiatry.2018.0180 29617515

32. Tassone F, Hagerman RJ, Taylor AK, Gane LW, Godfrey TE, Hagerman PJ. Elevated levels of FMR1 mRNA in carrier males: a new mechanism of involvement in the fragile-X syndrome. Am J Hum Genet. 2000;66(1):6–15. Epub 2000/01/13. doi: 10.1086/302720 10631132

33. Kenneson A, Zhang F, Hagedorn CH, Warren ST. Reduced FMRP and increased FMR1 transcription is proportionally associated with CGG repeat number in intermediate-length and premutation carriers. Hum Mol Genet. 2001;10(14):1449–54. Epub 2001/07/13. doi: 10.1093/hmg/10.14.1449 11448936

34. Ludwig AL, Espinal GM, Pretto DI, Jamal AL, Arque G, Tassone F, et al. CNS expression of murine fragile X protein (FMRP) as a function of CGG-repeat size. Hum Mol Genet. 2014;23(12):3228–38. Epub 2014/01/28. doi: 10.1093/hmg/ddu032 24463622

35. Pretto DI, Mendoza-Morales G, Lo J, Cao R, Hadd A, Latham GJ, et al. CGG allele size somatic mosaicism and methylation in FMR1 premutation alleles. J Med Genet. 2014;51(5):309–18. Epub 2014/03/05. doi: 10.1136/jmedgenet-2013-102021 24591415

36. Wheeler A, Raspa M, Hagerman R, Mailick M, Riley C. Implications of the FMR1 Premutation for Children, Adolescents, Adults, and Their Families. Pediatrics. 2017;139(Suppl 3):S172–S82. Epub 2017/08/18. doi: 10.1542/peds.2016-1159D 28814538

37. Chonchaiya W, Au J, Schneider A, Hessl D, Harris SW, Laird M, et al. Increased prevalence of seizures in boys who were probands with the FMR1 premutation and co-morbid autism spectrum disorder. Hum Genet. 2012;131(4):581–9. Epub 2011/10/18. doi: 10.1007/s00439-011-1106-6 22001913

38. Tassone F, Hagerman RJ, Loesch DZ, Lachiewicz A, Taylor AK, Hagerman PJ. Fragile X males with unmethylated, full mutation trinucleotide repeat expansions have elevated levels of FMR1 messenger RNA. Am J Med Genet. 2000;94(3):232–6. Epub 2000/09/20. doi: 10.1002/1096-8628(20000918)94:3<232::aid-ajmg9>3.0.co;2-h 10995510

39. Tassone F, Hagerman RJ, Taylor AK, Hagerman PJ. A majority of fragile X males with methylated, full mutation alleles have significant levels of FMR1 messenger RNA. J Med Genet. 2001;38(7):453–6. Epub 2001/07/04. doi: 10.1136/jmg.38.7.453 11432964

40. Verheij C, de Graaff E, Bakker CE, Willemsen R, Willems PJ, Meijer N, et al. Characterization of FMR1 proteins isolated from different tissues. Hum Mol Genet. 1995;4(5):895–901. Epub 1995/05/01. doi: 10.1093/hmg/4.5.895 7633450

41. Devys D, Lutz Y, Rouyer N, Bellocq JP, Mandel JL. The FMR-1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation. Nat Genet. 1993;4(4):335–40. doi: 10.1038/ng0893-335 8401578

42. Kaufmann WE, Abrams MT, Chen W, Reiss AL. Genotype, molecular phenotype, and cognitive phenotype: correlations in fragile X syndrome. Am J Med Genet. 1999;83(4):286–95. Epub 1999/04/20. 10208163

43. Pretto D, Yrigollen CM, Tang HT, Williamson J, Espinal G, Iwahashi CK, et al. Clinical and molecular implications of mosaicism in FMR1 full mutations. Front Genet. 2014;5:318. Epub 2014/10/04. doi: 10.3389/fgene.2014.00318 25278957

44. McConkie-Rosell A, Lachiewicz AM, Spiridigliozzi GA, Tarleton J, Schoenwald S, Phelan MC, et al. Evidence that methylation of the FMR-I locus is responsible for variable phenotypic expression of the fragile X syndrome. Am J Hum Genet. 1993;53(4):800–9. Epub 1993/10/01. 8213810

45. Loesch DZ, Huggins RM, Bui QM, Taylor AK, Pratt C, Epstein J, et al. Effect of fragile X status categories and FMRP deficits on cognitive profiles estimated by robust pedigree analysis. Am J Med Genet A. 2003;122A(1):13–23. doi: 10.1002/ajmg.a.20214 12949966

46. Merenstein SA, Shyu V, Sobesky WE, Staley L, Berry-Kravis E, Nelson DL, et al. Fragile X syndrome in a normal IQ male with learning and emotional problems. J Am Acad Child Adolesc Psychiatry. 1994;33(9):1316–21. doi: 10.1097/00004583-199411000-00014 7995799

47. Hagerman RJ, Hull CE, Safanda JF, Carpenter I, Staley LW, O'Connor RA, et al. High functioning fragile X males: demonstration of an unmethylated fully expanded FMR-1 mutation associated with protein expression. Am J Med Genet. 1994;51(4):298–308. Epub 1994/07/15. doi: 10.1002/ajmg.1320510404 7942991

48. Rousseau F, Robb LJ, Rouillard P, Der Kaloustian VM. No mental retardation in a man with 40% abnormal methylation at the FMR-1 locus and transmission of sperm cell mutations as premutations. Hum Mol Genet. 1994;3(6):927–30. Epub 1994/06/01. doi: 10.1093/hmg/3.6.927 7951239

49. Smeets HJ, Smits AP, Verheij CE, Theelen JP, Willemsen R, van de Burgt I, et al. Normal phenotype in two brothers with a full FMR1 mutation. Hum Mol Genet. 1995;4(11):2103–8. doi: 10.1093/hmg/4.11.2103 8589687

50. Lachiewicz AM, Spiridigliozzi GA, McConkie-Rosell A, Burgess D, Feng Y, Warren ST, et al. A fragile X male with a broad smear on Southern blot analysis representing 100–500 CGG repeats and no methylation at the EagI site of the FMR-1 gene. Am J Med Genet. 1996;64(2):278–82. doi: 10.1002/(SICI)1096-8628(19960809)64:2<278::AID-AJMG9>3.0.CO;2-Q 8844065

51. Steyaert J, Borghgraef M, Legius E, Fryns JP. Molecular-intelligence correlations in young fragile X males with a mild CGG repeat expansion in the FMR1 gene. Am J Med Genet. 1996;64(2):274–7. doi: 10.1002/(SICI)1096-8628(19960809)64:2<274::AID-AJMG8>3.0.CO;2-U 8844064

52. Wang Z, Taylor AK, Bridge JA. FMR1 fully expanded mutation with minimal methylation in a high functioning fragile X male. J Med Genet. 1996;33(5):376–8. Epub 1996/05/01. doi: 10.1136/jmg.33.5.376 8733046

53. Wöhrle D, Salat U, Gläser D, Mücke J, Meisel-Stosiek M, Schindler D, et al. Unusual mutations in high functioning fragile X males: apparent instability of expanded unmethylated CGG repeats. J Med Genet. 1998;35(2):103–11. Epub 1998/03/21. doi: 10.1136/jmg.35.2.103 9507388

54. Winarni TI, Schneider A, Borodyanskara M, Hagerman RJ. Early intervention combined with targeted treatment promotes cognitive and behavioral improvements in young children with fragile x syndrome. Case Rep Genet. 2012;2012:280813. Epub 2012/10/18. doi: 10.1155/2012/280813 23074686

55. Chen L, Hadd A, Sah S, Filipovic-Sadic S, Krosting J, Sekinger E, et al. An information-rich CGG repeat primed PCR that detects the full range of fragile X expanded alleles and minimizes the need for southern blot analysis. J Mol Diagn. 2010;12(5):589–600. Epub 2010/07/10. doi: 10.2353/jmoldx.2010.090227 20616364

56. Filipovic-Sadic S, Sah S, Chen L, Krosting J, Sekinger E, Zhang W, et al. A novel FMR1 PCR method for the routine detection of low abundance expanded alleles and full mutations in fragile X syndrome. Clin Chem. 2010;56(3):399–408. Epub 2010/01/09. doi: 10.1373/clinchem.2009.136101 20056738

57. Yrigollen CM, Martorell L, Durbin-Johnson B, Naudo M, Genoves J, Murgia A, et al. AGG interruptions and maternal age affect FMR1 CGG repeat allele stability during transmission. J Neurodev Disord. 2014;6(1):24. Epub 2014/08/12. doi: 10.1186/1866-1955-6-24 25110527

58. Jiraanont P, Kumar M, Tang HT, Espinal G, Hagerman PJ, Hagerman RJ, et al. Size and methylation mosaicism in males with Fragile X syndrome. Expert Rev Mol Diagn. 2017;17(11):1023–32. doi: 10.1080/14737159.2017.1377612 28929824

59. Willemsen R, Mohkamsing S, de Vries B, Devys D, van den Ouweland A, Mandel JL, et al. Rapid antibody test for fragile X syndrome. Lancet. 1995;345(8958):1147–8. doi: 10.1016/s0140-6736(95)90979-6 7723547

60. Chiurazzi P, Pomponi MG, Pietrobono R, Bakker CE, Neri G, Oostra BA. Synergistic effect of histone hyperacetylation and DNA demethylation in the reactivation of the FMR1 gene. Hum Mol Genet. 1999;8(12):2317–23. doi: 10.1093/hmg/8.12.2317 10545613

61. Chiurazzi P, Neri G. Pharmacological reactivation of inactive genes: the fragile X experience. Brain Res Bull. 2001;56(3–4):383–7. Epub 2001/11/24. doi: 10.1016/s0361-9230(01)00571-8 11719276

62. Pietrobono R, Pomponi MG, Tabolacci E, Oostra B, Chiurazzi P, Neri G. Quantitative analysis of DNA demethylation and transcriptional reactivation of the FMR1 gene in fragile X cells treated with 5-azadeoxycytidine. Nucleic Acids Res. 2002;30(14):3278–85. Epub 2002/07/24. doi: 10.1093/nar/gkf434 12136110

63. Tabolacci E, De Pascalis I, Accadia M, Terracciano A, Moscato U, Chiurazzi P, et al. Modest reactivation of the mutant FMR1 gene by valproic acid is accompanied by histone modifications but not DNA demethylation. Pharmacogenet Genomics. 2008;18(8):738–41. Epub 2008/07/16. doi: 10.1097/FPC.0b013e32830500a1 18622267

64. Bar-Nur O, Caspi I, Benvenisty N. Molecular analysis of FMR1 reactivation in fragile-X induced pluripotent stem cells and their neuronal derivatives. Journal of molecular cell biology. 2012;4(3):180–3. doi: 10.1093/jmcb/mjs007 22430918

65. Tabolacci E, Palumbo F, Nobile V, Neri G. Transcriptional Reactivation of the FMR1 Gene. A Possible Approach to the Treatment of the Fragile X Syndrome. Genes. 2016;7(8). doi: 10.3390/genes7080049

66. Xie N, Gong H, Suhl JA, Chopra P, Wang T, Warren ST. Reactivation of FMR1 by CRISPR/Cas9-Mediated Deletion of the Expanded CGG-Repeat of the Fragile X Chromosome. PLoS One. 2016;11(10):e0165499. doi: 10.1371/journal.pone.0165499 27768763

67. Li M, Zhao H, Ananiev GE, Musser MT, Ness KH, Maglaque DL, et al. Establishment of Reporter Lines for Detecting Fragile X Mental Retardation (FMR1) Gene Reactivation in Human Neural Cells. Stem Cells. 2017;35(1):158–69. Epub 2016/07/17. doi: 10.1002/stem.2463 27422057

68. Haenfler JM, Skariah G, Rodriguez CM, Monteiro da Rocha A, Parent JM, Smith GD, et al. Targeted Reactivation of FMR1 Transcription in Fragile X Syndrome Embryonic Stem Cells. Front Mol Neurosci. 2018;11:282. doi: 10.3389/fnmol.2018.00282 30158855

69. Kumari D, Gazy I, Usdin K. Pharmacological Reactivation of the Silenced FMR1 Gene as a Targeted Therapeutic Approach for Fragile X Syndrome. Brain Sciences. 2019;9(2). Epub 2019/02/15. doi: 10.3390/brainsci9020039

70. Fatemi SH, Folsom TD. The role of fragile X mental retardation protein in major mental disorders. Neuropharmacology. 2011;60(7–8):1221–6. Epub 2010/11/27. doi: 10.1016/j.neuropharm.2010.11.011 21108954

71. Fatemi SH, Folsom TD, Kneeland RE, Liesch SB. Metabotropic glutamate receptor 5 upregulation in children with autism is associated with underexpression of both Fragile X mental retardation protein and GABAA receptor beta 3 in adults with autism. Anatomical record (Hoboken, NJ: 2007). 2011;294(10):1635–45. Epub 2011/09/09. doi: 10.1002/ar.21299

72. Wegiel J, Brown WT, La Fauci G, Adayev T, Kascsak R, Kascsak R, et al. The role of reduced expression of fragile X mental retardation protein in neurons and increased expression in astrocytes in idiopathic and syndromic autism (duplications 15q11.2-q13). Autism Res. 2018;11(10):1316–31. Epub 2018/08/15. doi: 10.1002/aur.2003 30107092

73. Fatemi SH, Kneeland RE, Liesch SB, Folsom TD. Fragile X mental retardation protein levels are decreased in major psychiatric disorders. Schizophr Res. 2010;124(1–3):246–7. Epub 2010/08/24. doi: 10.1016/j.schres.2010.07.017 20727716

74. Kovacs T, Kelemen O, Keri S. Decreased fragile X mental retardation protein (FMRP) is associated with lower IQ and earlier illness onset in patients with schizophrenia. Psychiatry Res. 2013;210(3):690–3. Epub 2013/01/22. doi: 10.1016/j.psychres.2012.12.022 23333116

75. Iwahashi C, Tassone F, Hagerman RJ, Yasui D, Parrott G, Nguyen D, et al. A quantitative ELISA assay for the fragile X mental retardation 1 protein. J Mol Diagn. 2009;11(4):281–9. Epub 2009/05/23. doi: 10.2353/jmoldx.2009.080118 19460937

76. Iwahashi CK, Yasui DH, An HJ, Greco CM, Tassone F, Nannen K, et al. Protein composition of the intranuclear inclusions of FXTAS. Brain. 2006;129(Pt 1):256–71. Epub 2005/10/26. doi: 10.1093/brain/awh650 16246864

77. Lessard M, Chouiali A, Drouin R, Sebire G, Corbin F. Quantitative measurement of FMRP in blood platelets as a new screening test for fragile X syndrome. Clin Genet. 2012;82(5):472–7. Epub 2011/10/14. doi: 10.1111/j.1399-0004.2011.01798.x 21992468

78. LaFauci G, Adayev T, Kascsak R, Kascsak R, Nolin S, Mehta P, et al. Fragile X screening by quantification of FMRP in dried blood spots by a Luminex immunoassay. J Mol Diagn. 2013;15(4):508–17. Epub 2013/05/11. doi: 10.1016/j.jmoldx.2013.02.006 23660422

79. Schutzius G, Bleckmann D, Kapps-Fouthier S, di Giorgio F, Gerhartz B, Weiss A. A quantitative homogeneous assay for fragile X mental retardation 1 protein. J Neurodev Disord. 2013;5(1):8. Epub 2013/04/04. doi: 10.1186/1866-1955-5-8 23548045

80. Sitzmann AF, Hagelstrom RT, Tassone F, Hagerman RJ, Butler MG. Rare FMR1 gene mutations causing fragile X syndrome: A review. Am J Med Genet A. 2018;176(1):11–8. doi: 10.1002/ajmg.a.38504 29178241

81. Sansone SM, Schneider A, Bickel E, Berry-Kravis E, Prescott C, Hessl D. Improving IQ measurement in intellectual disabilities using true deviation from population norms. J Neurodev Disord. 2014;6(1):16. Epub 2014/01/01. doi: 10.1186/1866-1955-6-16 26491488

82. Hessl D, Nguyen DV, Green C, Chavez A, Tassone F, Hagerman RJ, et al. A solution to limitations of cognitive testing in children with intellectual disabilities: the case of fragile X syndrome. J Neurodevelop Disord. 2009;1(1):33–45. Epub 2009/10/30. doi: 10.1007/s11689-008-9001-8

83. Kumari D, Swaroop M, Southall N, Huang W, Zheng W, Usdin K. High-Throughput Screening to Identify Compounds That Increase Fragile X Mental Retardation Protein Expression in Neural Stem Cells Differentiated From Fragile X Syndrome Patient-Derived Induced Pluripotent Stem Cells. Stem Cells Transl Med. 2015;4(7):800–8. doi: 10.5966/sctm.2014-0278 25999519

84. Cleveland WS. Robust Locally Weighted Regression and Smoothing Scatterplots. J Am Stat Assoc. 1979;74(368):829–36. doi: 10.1080/01621459.1979.10481038

85. Arsenault J, Gholizadeh S, Niibori Y, Pacey LK, Halder SK, Koxhioni E, et al. FMRP Expression Levels in Mouse Central Nervous System Neurons Determine Behavioral Phenotype. Hum Gene Ther. 2016;27(12):982–96. Epub 2016/10/19. doi: 10.1089/hum.2016.090 27604541

86. Peier AM, McIlwain KL, Kenneson A, Warren ST, Paylor R, Nelson DL. (Over)correction of FMR1 deficiency with YAC transgenics: behavioral and physical features. Hum Mol Genet. 2000;9(8):1145–59. Epub 2000/04/18. doi: 10.1093/hmg/9.8.1145 10767339

87. Musumeci SA, Calabrese G, Bonaccorso CM, D'Antoni S, Brouwer JR, Bakker CE, et al. Audiogenic seizure susceptibility is reduced in fragile X knockout mice after introduction of FMR1 transgenes. Exp Neurol. 2007;203(1):233–40. Epub 2006/09/30. doi: 10.1016/j.expneurol.2006.08.007 17007840

88. Gholizadeh S, Arsenault J, Xuan IC, Pacey LK, Hampson DR. Reduced phenotypic severity following adeno-associated virus-mediated Fmr1 gene delivery in fragile X mice. Neuropsychopharmacology. 2014;39(13):3100–11. Epub 2014/07/08. doi: 10.1038/npp.2014.167 24998620

89. Bernard PB, Castano AM, O'Leary H, Simpson K, Browning MD, Benke TA. Phosphorylation of FMRP and alterations of FMRP complex underlie enhanced mLTD in adult rats triggered by early life seizures. Neurobiol Dis. 2013;59:1–17. Epub 2013/07/09. doi: 10.1016/j.nbd.2013.06.013 23831253

90. Holley AJ, Hodges SL, Nolan SO, Binder M, Okoh JT, Ackerman K, et al. A single seizure selectively impairs hippocampal-dependent memory and is associated with alterations in PI3K/Akt/mTOR and FMRP signaling. Epilepsia Open. 2018;3(4):511–23. doi: 10.1002/epi4.12273 30525120

91. Hodges SL, Reynolds CD, Nolan SO, Huebschman JL, Okoh JT, Binder MS, et al. A single early-life seizure results in long-term behavioral changes in the adult Fmr1 knockout mouse. Epilepsy Res. 2019;157:106193. Epub 2019/09/15. doi: 10.1016/j.eplepsyres.2019.106193 31520894

92. Loesch DZ, Huggins RM, Hagerman RJ. Phenotypic variation and FMRP levels in fragile X. Ment Retard Dev Disabil Res Rev. 2004;10(1):31–41. Epub 2004/03/03. doi: 10.1002/mrdd.20006 14994286

93. Plomin R, Deary IJ. Genetics and intelligence differences: five special findings. Mol Psychiatry. 2015;20(1):98–108. Epub 2014/09/17. doi: 10.1038/mp.2014.105 25224258

94. Dyer-Friedman J, Glaser B, Hessl D, Johnston C, Huffman LC, Taylor A, et al. Genetic and environmental influences on the cognitive outcomes of children with fragile X syndrome. J Am Acad Child Adolesc Psychiatry. 2002;41(3):237–44. doi: 10.1097/00004583-200203000-00002 11886017


Článok vyšiel v časopise

PLOS One


2019 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#