The effects of arm swing amplitude and lower-limb asymmetry on gait stability
Autoři:
Allen Hill aff001; Julie Nantel aff001
Působiště autorů:
University of Ottawa, School of Human Kinetics, Ottawa, Canada
aff001
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0218644
Souhrn
Changes to arm swing and gait symmetry are symptomatic of several pathological gaits associated with reduced stability. The purpose of this study was to examine the relative contributions of arm swing and gait symmetry towards gait stability. We theorized that actively increasing arm swing would increase gait stability, while asymmetric walking would decrease gait stability. Fifteen healthy, young adults (23.4 ± 2.8 yrs) walked on a split-belt treadmill under symmetric (1.2 m/s) and asymmetric walking (left/right, 5:4 speed ratio) with three different arm swings: held, normal, and active. Trunk local dynamic stability, inter-limb coordination, and spatiotemporal gait variability and symmetry were measured. Active arm swing resulted in improved local trunk stability, increased gait variability, and decreased inter-limb coordination (p < .013). The changes in local trunk stability and gait variability during active arm swing suggests that these metrics quantify fundamentally different aspects of stability and are not always comparable. Split-belt walking caused reduced local trunk stability, increased gait variability, and increased lower limb asymmetry (p < .003). However, the arm swing symmetry was unaffected by gait asymmetry, this suggests that the decreases in gait stability are linked to the increases in gait asymmetry rather than increases in arm swing asymmetry.
Klíčová slova:
Body limbs – Hip – Young adults – Gait analysis – Walking – Dynamical systems – Parkinson disease
Zdroje
1. Gutnik B, Mackie H, Hudson G, Standen C. How close to a pendulum is human upper limb movement during walking? HOMO—Journal of Comparative Human Biology. 2005;56(1):35–49. doi: 10.1016/j.jchb.2004.09.002
2. Kuhtz-Buschbeck JP, Jing B. Activity of upper limb muscles during human walking. Journal of Electromyography and Kinesiology. 2012;22(2):199–206. doi: 10.1016/j.jelekin.2011.08.014 21945656
3. Huang HJ, Ferris DP. Upper and lower limb muscle activation is bidirectionally and ipsilaterally coupled. Medicine and Science in Sports and Exercise. 2009;41(9):1778–1789. doi: 10.1249/MSS.0b013e31819f75a7 19657291
4. Kawashima N, Nozaki D, Abe MO, Nakazawa K. Shaping Appropriate Locomotive Motor Output Through Interlimb Neural Pathway Within Spinal Cord in Humans. Journal of Neurophysiology. 2008;99(6):2946–2955. doi: 10.1152/jn.00020.2008 18450579
5. Ortega JD, Fehlman LA, Farley CT. Effects of aging and arm swing on the metabolic cost of stability in human walking. Journal of Biomechanics. 2008;41(16):3303–3308. doi: 10.1016/j.jbiomech.2008.06.039 18814873
6. Yang HS, Atkins LT, Jensen DB, James CR. Effects of constrained arm swing on vertical center of mass displacement during walking. Gait & Posture. 2015;42(4):430–434. doi: 10.1016/j.gaitpost.2015.07.010
7. Bruijn SM, Meijer OG, Beek PJ, Dieën JHv. The effects of arm swing on human gait stability. Journal of Experimental Biology. 2010;213(23):3945–3952. doi: 10.1242/jeb.045112 21075935
8. Punt M, Bruijn SM, Wittink H, van Dieën JH. Effect of arm swing strategy on local dynamic stability of human gait. Gait & Posture. 2015;41(2):504–509. doi: 10.1016/j.gaitpost.2014.12.002
9. Bruijn SM, Meijer OG, Beek PJ, Dieën JHv. Assessing the stability of human locomotion: a review of current measures. Journal of The Royal Society Interface. 2013;10(83):20120999. doi: 10.1098/rsif.2012.0999
10. Arellano CJ, Kram R. The effects of step width and arm swing on energetic cost and lateral balance during running. Journal of Biomechanics. 2011;44(7):1291–1295. doi: 10.1016/j.jbiomech.2011.01.002 21316058
11. Nakakubo S, Doi T, Sawa R, Misu S, Tsutsumimoto K, Ono R. Does arm swing emphasized deliberately increase the trunk stability during walking in the elderly adults? Gait & Posture. 2014;40(4):516–520. doi: 10.1016/j.gaitpost.2014.06.005
12. Mirelman A, Bernad-Elazari H, Nobel T, Thaler A, Peruzzi A, Plotnik M, et al. Effects of Aging on Arm Swing during Gait: The Role of Gait Speed and Dual Tasking. PLOS ONE. 2015;10(8):e0136043. doi: 10.1371/journal.pone.0136043 26305896
13. Knutsson E. An Analysis of Parkinsonian Gait. Brain. 1972;95(3):475–486. doi: 10.1093/brain/95.3.475 4655275
14. Zijlmans JCM, Poels PJE, Duysens J, Straaten Jvd, Thien T, Hof MAv, et al. Quantitative gait analysis in patients with vascular parkinsonism. Movement Disorders. 1996;11(5):501–508. doi: 10.1002/mds.870110505 8866491
15. Carpinella I, Crenna P, Marzegan A, Rabuffetti M, Rizzone M, Lopiano L, et al. Effect of L-dopa and Subthalamic Nucleus stimulation on arm and leg swing during gait in Parkinson’s Disease. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2007. p. 6664–6667.
16. Siragy T, Nantel J. Quantifying Dynamic Balance in Young, Elderly and Parkinson’s Individuals: A Systematic Review. Frontiers in Aging Neuroscience. 2018;10. doi: 10.3389/fnagi.2018.00387 30524270
17. Maki BE. Gait Changes in Older Adults: Predictors of Falls or Indicators of Fear? Journal of the American Geriatrics Society. 1997;45(3):313–320. doi: 10.1111/j.1532-5415.1997.tb00946.x 9063277
18. Brach JS, Berthold R, Craik R, VanSwearingen JM, Newman AB. Gait Variability in Community-Dwelling Older Adults. Journal of the American Geriatrics Society. 2001;49(12):1646–1650. doi: 10.1046/j.1532-5415.2001.t01-1-49274.x 11843998
19. Hausdorff JM, Rios DA, Edelberg HK. Gait variability and fall risk in community-living older adults: A 1-year prospective study. Archives of Physical Medicine and Rehabilitation. 2001;82(8):1050–1056. doi: 10.1053/apmr.2001.24893 11494184
20. Baltadjieva R, Giladi N, Gruendlinger L, Peretz C, Hausdorff JM. Marked alterations in the gait timing and rhythmicity of patients with de novo Parkinson’s disease. European Journal of Neuroscience. 2006;24(6):1815–1820. doi: 10.1111/j.1460-9568.2006.05033.x 17004944
21. Wu Y, Li Y, Liu AM, Xiao F, Wang YZ, Hu F, et al. Effect of active arm swing to local dynamic stability during walking. Human Movement Science. 2016;45:102–109. doi: 10.1016/j.humov.2015.10.005 26615477
22. van Emmerik REA, Wagenaar RC. Effects of walking velocity on relative phase dynamics in the trunk in human walking. Journal of Biomechanics. 1996;29(9):1175–1184. doi: 10.1016/0021-9290(95)00128-x 8872274
23. Wagenaar RC, van Emmerik REA. Resonant frequencies of arms and legs identify different walking patterns. Journal of Biomechanics. 2000;33(7):853–861. doi: 10.1016/s0021-9290(00)00020-8 10831760
24. Huang X, Mahoney JM, Lewis MM, Guangwei Du, Piazza SJ, Cusumano JP. Both coordination and symmetry of arm swing are reduced in Parkinson’s disease. Gait & Posture. 2012;35(3):373–377. doi: 10.1016/j.gaitpost.2011.10.180
25. Dingwell JB, Cusumano JP, Cavanagh PR, Sternad D. Local Dynamic Stability Versus Kinematic Variability of Continuous Overground and Treadmill Walking. Journal of Biomechanical Engineering. 2000;123(1):27–32. doi: 10.1115/1.1336798
26. van Schooten KS, Sloot LH, Bruijn SM, Kingma H, Meijer OG, Pijnappels M, et al. Sensitivity of trunk variability and stability measures to balance impairments induced by galvanic vestibular stimulation during gait. Gait & Posture. 2011;33(4):656–660. doi: 10.1016/j.gaitpost.2011.02.017
27. England SA, Granata KP. The influence of gait speed on local dynamic stability of walking. Gait & Posture. 2007;25(2):172–178. doi: 10.1016/j.gaitpost.2006.03.003
28. Bruijn SM, van Dieën JH, Meijer OG, Beek PJ. Is slow walking more stable? Journal of Biomechanics. 2009;42(10):1506–1512. doi: 10.1016/j.jbiomech.2009.03.047 19446294
29. Buzzi UH, Stergiou N, Kurz MJ, Hageman PA, Heidel J. Nonlinear dynamics indicates aging affects variability during gait. Clinical Biomechanics. 2003;18(5):435–443. doi: 10.1016/s0268-0033(03)00029-9 12763440
30. Yogev G, Plotnik M, Peretz C, Giladi N, Hausdorff JM. Gait asymmetry in patients with Parkinson’s disease and elderly fallers: when does the bilateral coordination of gait require attention? Experimental Brain Research. 2007;177(3):336–346. doi: 10.1007/s00221-006-0676-3 16972073
31. Darter BJ, Labrecque BA, Perera RA. Dynamic stability during split-belt walking and the relationship with step length symmetry. Gait & Posture. 2018;62:86–91. doi: 10.1016/j.gaitpost.2018.03.006
32. Buurke TJW, Lamoth CJC, Vervoort D, Woude LHVvd, Otter Rd. Adaptive control of dynamic balance in human gait on a split-belt treadmill. Journal of Experimental Biology. 2018;221(13):jeb174896. doi: 10.1242/jeb.174896 29773683
33. Wilken JM, Rodriguez KM, Brawner M, Darter BJ. Reliability and minimal detectible change values for gait kinematics and kinetics in healthy adults. Gait & Posture. 2012;35(2):301–307. doi: 10.1016/j.gaitpost.2011.09.105
34. Bezanson J, Edelman A, Karpinski S, Shah V. Julia: A Fresh Approach to Numerical Computing. SIAM Review. 2017;59(1):65–98. doi: 10.1137/141000671
35. Lamb PF, Stöckl M. On the use of continuous relative phase: Review of current approaches and outline for a new standard. Clinical Biomechanics. 2014;29(5):484–493. doi: 10.1016/j.clinbiomech.2014.03.008 24726779
36. Fisher NI. Statistical Analysis of Circular Data. Cambridge University Press; 1993.
37. Plotnik M, Giladi N, Hausdorff JM. A new measure for quantifying the bilateral coordination of human gait: effects of aging and Parkinson’s disease. Experimental Brain Research. 2007;181(4):561–570. doi: 10.1007/s00221-007-0955-7 17503027
38. Rosenstein MT, Collins JJ, De Luca CJ. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D: Nonlinear Phenomena. 1993;65(1):117–134. doi: 10.1016/0167-2789(93)90009-P
39. Bruijn SM, van Dieën JH, Meijer OG, Beek PJ. Statistical precision and sensitivity of measures of dynamic gait stability. Journal of Neuroscience Methods. 2009;178(2):327–333. doi: 10.1016/j.jneumeth.2008.12.015 19135478
40. Bruijn SM, Kate WRTT, Faber GS, Meijer OG, Beek PJ, Dieën JHv. Estimating Dynamic Gait Stability Using Data from Non-aligned Inertial Sensors. Annals of Biomedical Engineering. 2010;38(8):2588–2593. doi: 10.1007/s10439-010-0018-2 20354902
41. Kang HG, Dingwell JB. Intra-session reliability of local dynamic stability of walking. Gait & Posture. 2006;24(3):386–390. doi: 10.1016/j.gaitpost.2005.11.004
42. Toebes MJP, Hoozemans MJM, Furrer R, Dekker J, van Dieën JH. Local dynamic stability and variability of gait are associated with fall history in elderly subjects. Gait & Posture. 2012;36(3):527–531. doi: 10.1016/j.gaitpost.2012.05.016
43. Su JLS, Dingwell JB. Dynamic Stability of Passive Dynamic Walking on an Irregular Surface. Journal of Biomechanical Engineering. 2007;129(6):802–810. doi: 10.1115/1.2800760 18067383
44. Dingwell JB, Cusumano JP. Nonlinear time series analysis of normal and pathological human walking. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2000;10(4):848–863. doi: 10.1063/1.1324008
45. Herr H, Popovic M. Angular momentum in human walking. Journal of Experimental Biology. 2008;211(4):467–481. doi: 10.1242/jeb.008573 18245623
46. Bruijn SM, Bregman DJJ, Meijer OG, Beek PJ, van Dieën JH. Maximum Lyapunov exponents as predictors of global gait stability: A modelling approach. Medical Engineering & Physics. 2012;34(4):428–436. doi: 10.1016/j.medengphy.2011.07.024
47. McFadyen BJ, Hegeman J, Duysens J. Dual task effects for asymmetric stepping on a split-belt treadmill. Gait & Posture. 2009;30(3):340–344. doi: 10.1016/j.gaitpost.2009.06.004
48. Springer S, Giladi N, Peretz C, Yogev G, Simon ES, Hausdorff JM. Dual-tasking effects on gait variability: The role of aging, falls, and executive function. Movement Disorders. 2006;21(7):950–957. doi: 10.1002/mds.20848 16541455
49. Lamoth CJ, van Deudekom FJ, van Campen JP, Appels BA, de Vries OJ, Pijnappels M. Gait stability and variability measures show effects of impaired cognition and dual tasking in frail people. Journal of NeuroEngineering and Rehabilitation. 2011;8(1):2. doi: 10.1186/1743-0003-8-2 21241487
50. Hollman JH, Kovash FM, Kubik JJ, Linbo RA. Age-related differences in spatiotemporal markers of gait stability during dual task walking. Gait & Posture. 2007;26(1):113–119. doi: 10.1016/j.gaitpost.2006.08.005
51. Malone LA, Bastian AJ, Torres-Oviedo G. How does the motor system correct for errors in time and space during locomotor adaptation? Journal of Neurophysiology. 2012;108(2):672–683. doi: 10.1152/jn.00391.2011 22514294
52. Reisman DS, Block HJ, Bastian AJ. Interlimb Coordination During Locomotion: What Can be Adapted and Stored? Journal of Neurophysiology. 2005;94(4):2403–2415. doi: 10.1152/jn.00089.2005 15958603
53. MacLellan MJ, Qaderdan K, Koehestanie P, Duysens J, McFadyen BJ. Arm movements during split-belt walking reveal predominant patterns of interlimb coupling. Human Movement Science. 2013;32(1):79–90. doi: 10.1016/j.humov.2012.08.001 23176813
54. Dietz V, Zijlstra W, Duysens J. Human neuronal interlimb coordination during split-belt locomotion. Experimental Brain Research. 1994;101(3):513–520. doi: 10.1007/bf00227344 7851518
55. Bruijn SM, Van Impe A, Duysens J, Swinnen SP. Split-belt walking: adaptation differences between young and older adults. Journal of Neurophysiology. 2012;108(4):1149–1157. doi: 10.1152/jn.00018.2012 22623488
56. Roemmich RT, Nocera JR, Stegemöller EL, Hassan A, Okun MS, Hass CJ. Locomotor adaptation and locomotor adaptive learning in Parkinson’s disease and normal aging. Clinical Neurophysiology. 2014;125(2):313–319. doi: 10.1016/j.clinph.2013.07.003 23916406
57. Plotnik M, Giladi N, Balash Y, Peretz C, Hausdorff JM. Is freezing of gait in Parkinson’s disease related to asymmetric motor function? Annals of Neurology. 2005;57(5):656–663. doi: 10.1002/ana.20452 15852404
58. Wood BH, Bilclough JA, Bowron A, Walker RW. Incidence and prediction of falls in Parkinson’s disease: a prospective multidisciplinary study. Journal of Neurology, Neurosurgery & Psychiatry. 2002;72(6):721–725. doi: 10.1136/jnnp.72.6.721
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts