Cashew nuts (Anacardium occidentale L.) decrease visceral fat, yet augment glucose in dyslipidemic rats
Autoři:
Celina C. Q. Dias aff001; Marta S. Madruga aff001; Maria Manuela E. Pintado aff002; Gabriel Henrique Oliveira Almeida aff003; Ana Paula Vilar Alves aff004; Francileide Amaro Dantas aff004; Jéssyka Kallyne Galvão Bezerra aff004; Marília Ferreira Frazão Tavares de Melo aff004; Vanessa Bordin Viera aff004; Juliana Késsia B. Soares aff004
Působiště autorů:
DEA—Department of Food Engineering, Technology Centre, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
aff001; Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
aff002; Animal Science Departament, Federal University of Paraiba, Areia, Paraiba, Brazil
aff003; Department of Nutrition, Center of Education and Health, Federal University of Campina Grande, Cuité, Paraíba, Brazil
aff004
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0225736
Souhrn
The objective of this study was to evaluate the biological effects of roasted Cashew nuts consumption on biochemical and murinometric parameters in dyslipidemic rats receiving lipid supplementation. Young male rats were randomly assigned to three experimental groups (n = 10). The Control group (CONT) was treated with water, the Dyslipidemic group (DL) received a high fat content emulsion throughout the experiment, and the Dyslipidemic Cashew Nuts group (DLCN) received the same high fat content emulsion throughout the experiment, yet was treated with Cashew nuts. Body parameters, biochemical, hepatic and fecal fatty acid profiles were all evaluated. The levels of total cholesterol and triglycerides were higher in the DL and DLCN groups as compared to the control group. DLCN and CONT presented no difference in HDL levels. DLCN presented higher glycemia levels than the other groups. There was reduction of body fat in DLCN as compared to other groups, but with higher accumulations of liver fat. DLCN presented a reduction in saturated hepatic fatty acids of 20.8%, and an increase of 177% in relation to CONT; there was also a 21% in increase DL for ω9 fatty acids in comparison to CONT. As for fecal fatty acids, there was a lower concentration of polysaturates in DLCN as compared to the other groups. The data showed that the consumption of Cashew nuts by the dyslipidemic animals treated with a hyperlipidic diet induced greater accumulations of liver fat and worsened glycemic levels, despite having reduced visceral fats and increased fecal fat excretion.
Klíčová slova:
Lipids – Fatty acids – Diet – Fats – Emulsions – Fatty liver – Phenols
Zdroje
1. Grosso G, Estruch R. Nut consumption and age-related disease. Maturitas. 2016;84:11–16. doi: 10.1016/j.maturitas.2015.10.014 26586104
2. Sabaté J, Haddad E, Tanzman JS, Jambazian P, Rajaram S. Serum lipid response to the graduated enrichment of a Step I diet with almonds: a randomized feeding trial. Am J Clin Nutr. 2003;77:1379–84. doi: 10.1093/ajcn/77.6.1379 12791613
3. Albert CM, Gaziano JM, Willett WC, Manson JE. Nut consumption and decreased risk of sudden cardiac death in the Physicians' Health Study. Arch Intern Med. 2002;162:1382–87. doi: 10.1001/archinte.162.12.1382 12076237
4. Jiang R, Jacobs DR Jr, Mayer-Davis E, Szklo M, Herrington D, Jenny NS, et al. Nut and seed consumption and inflammatory markers in the multi-ethnic study of atherosclerosis. Am J Epidemiol. 2006;163:222–31. doi: 10.1093/aje/kwj033 16357111
5. Melo MFFT, Pereira DE, Sousa MM, Medeiros DMF, Lemos LTM, Madruga MS, et al. Maternal intake of cashew nuts accelerates reflex maturation and facilitates memory in the offspring. International Journal of Developmental Neuroscience. 2017;61:58–67. doi: 10.1016/j.ijdevneu.2017.06.006 28663041
6. Andrade TJAS, Araújo BQ, Citó AMGL, Silva J, Saffi J, Richter MF, et al. Antioxidant properties and chemical composition of technical Cashew Nut Shell Liquid (tCNSL). Food Chemistry. 2011;126:1044–48.
7. Carvalho ALN, Annonia R, Silva PRPS, Borelli P, Fock RA, Trevisan MTS, et al. Acute, subacute toxicity and mutagenic effects of anacardic acids from cashew (Anacardium occidentale Linn.) in mice. Journal of Ethnopharmacology. 2011;135:730–36. doi: 10.1016/j.jep.2011.04.002 21511024
8. NUTS & DRIED FRUITS STATISTICAL YEARBOOK 2016/2017. International Nut and Dried Fruit Council Foundation (INC). Available im: < http://www.nutfruit.org/wp-continguts/uploads/2017/06/Statistical-Yearbook-2016-2017.pdf> Access date: 01/07/2017.
9. Agila A, Barringer SA. Volatile Profile of Cashews (Anacardium occidentale L.) from Different Geographical Origins during Roasting. Journal of Food Science. 2011;76(5):768–74.
10. Baptista A, Gonçalves RV, Bressan J, Peluzio MCG. Antioxidant and Antimicrobial Activities of Crude Extracts and Fractions of Cashew (Anacardium occidentale L.), Cajui (Anacardium microcarpum), and Pequi (Caryocar brasiliense C.): A Systematic Review. Oxidative Medicine and Cellular Longevity. 2018;2018:13p. doi: 10.1155/2018/3753562 29849888
11. Alexiadou K, Katsilambros N. Nuts: Anti-atherogenic food? European Journal of Internal Medicine. 2011;22:141–46. doi: 10.1016/j.ejim.2010.11.008 21402243
12. Gómez-Caravaca AM, Verardo V, Caboni MF. Chromatographic techniques for the determination of alkyl-phenols, tocopherols and other minor polar compounds in raw and roasted cold pressed cashew nut oils. Journal of Chromatography A. 2010;1217:7411–17. doi: 10.1016/j.chroma.2010.09.054 20961547
13. Wong ND. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat. Rev. Cardiol. 2014;11:276–89. doi: 10.1038/nrcardio.2014.26 24663092
14. Faludi AA, Izar MCO, Saraiva JFK, Chacra APM, Bianco HT, Afiune Neto A, et al. Atualização da Diretriz brasileira de dislipidemias e prevenção da aterosclerose. Arquivos Brasileiro de Cardilogia. 2017;109(2).
15. AOAC INTERNATIONAL. Official methods of analysis. 16th ed. Gaitherburg: Published by AOAC International. 1997;2:1–43.
16. Prosky L, Asp NG, Sceweizer TF. Determination of insoluble, soluble and total fiber in food products: interlaboratory study. J Assoc Off Anal Chem. 1988;71(5):1017–23. 2853153
17. Liu M, Li XQ, Weber C, Lee CY, Brown J, Liu RH. Antioxidant and antiproliferative activities of raspberries. Journal of Agricultural and Food Chemistry. 2002;50:2926–30. doi: 10.1021/jf0111209 11982421
18. Zhishen J, Mengchen T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry. 1999;64:555–59.
19. Meireles BRLA. Potencial nutricional e antioxidante do fruto do catolé (Syagrus cearensis). M.Sc. Thesis, Universidade Federal da Paraíba. 2017. Available from: https://repositorio.ufpb.br/jspui/handle/123456789/12729
20. Xu D, Xu M, Lin L, Rao S, Wang J, Davey AK. The effect of isosteviol on hyperglycemia and dyslipidemia induced by lipotoxicity in rats fed with high-fat emulsion. Life Sciences. 2012;90:30–38. doi: 10.1016/j.lfs.2011.10.010 22075495
21. Novelli ELB, Diniz YS, Galhardi CM, Ebaid GMX, Rodrigues HG, Mani F, et al. Anthropometrical parameters and markers of obesity in rats. Laboratory Animals. 2007;41:111–119. doi: 10.1258/002367707779399518 17234057
22. Cinti S. The Adipose Organ. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2005;73:9–15.
23. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. Journal Biological Chemistry. 1957;226:497–509.
24. Hartman L, Lago RCA. Rapid preparation of fatty acid methyl from lipids. Lab. Pract. 1973;22:475. 4727126
25. Vadivel V, Kunyanga CN, Biesalski HK. Health benefits of nut consumption with special reference to body weight control. Nutrition. 2012;28:1089–97. doi: 10.1016/j.nut.2012.01.004 23044160
26. Casas-Agustench P, López-Uriarte P, Bulló M, Ros E, Cabré-Vila JJ, Salas-Salvadó J. Effects of one serving of mixed nuts on serum lipids, insulin resistance and inflammatory markers in patients with the metabolic syndrome. Nutrition, Metabolism & Cardiovascular Diseases. 2011;21:126–135.
27. Neyrinck AM, Bindels LB, De Backer F, Pachikian BD, Cani PD, Delzenne NM. Dietary supplementation with chitosan derived from mushrooms changes adipocytokine profile in diet-induced obese mice, a phenomenon linked to its lipid-lowering action. International Immunopharmacology. 2009;9:767–773. doi: 10.1016/j.intimp.2009.02.015 19286482
28. Chang S, Cui X, Guo M, Tian Y, Xu W, Huang K, et al. Insoluble Dietary Fiber from Pear Pomace Can Prevent High-Fat Diet-Induced Obesity in Rats Mainly by Improving the Structure of the Gut Microbiota. J. Microbiol. Biotechnol. 2017;27(4):856–867 doi: 10.4014/jmb.1610.10058 28173692
29. Tan SY, Mattes RD. Appetitive, dietary and health effects of almonds consumed with meals or as snacks: a randomized, controlled trial. European Journal of Clinical Nutrition. 2013;67:1205–1214. doi: 10.1038/ejcn.2013.184 24084509
30. Brennan AM, Sweeney LL, Liu X, Mantzoros CS. Walnut consumption increases satiation but has no effect on insulin resistance or the metabolic profile over a 4 day period. Obesity (Silver Spring). 2010;18(6):1176–1182. doi: 10.1038/oby.2009.409 19910942
31. Brockman DA, Chen X, Gallaher DD. High-Viscosity Dietary Fibers Reduce Adiposity and Decrease Hepatic Steatosis in Rats Fed a High-Fat Diet. J Nutr. 2014 144(9):1415–22. doi: 10.3945/jn.114.191577 24991042
32. Maljaars J, Romeyn EA, Haddeman E, Peters HPF, Masclee AAM. Effect of fat saturation on satiety, hormone release, and food intake. Am J Clin Nutr. 2009;89:1019–24. doi: 10.3945/ajcn.2008.27335 19225118
33. Kozimor A, Chang H, Cooper JA. Effects of dietary fatty acid composition from a high fat meal on satiety. Appetite. 2013;69:39–45. doi: 10.1016/j.appet.2013.05.006 23688821
34. Poudyal H, Kumar SA, Iyer A, Waanders J, Ward LC, Brown L. Responses to oleic, linoleic and α-linolenic acids in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. Journal of Nutritional Biochemistry. 2013;24:1381–1392. doi: 10.1016/j.jnutbio.2012.11.006 23333092
35. Bhaskaran S, Unnikrishnan A, Ranjit R, Qaisar R, Pharaoh G, Matyi S, et al. A fish oil diet induces mitochondrial uncoupling and mitochondrial unfolded protein response in epididymal white adipose tissue of mice. Free Radical Biology and Medicine. 2017;108:704–714. doi: 10.1016/j.freeradbiomed.2017.04.028 28455142
36. Trox J, Vadivel V, Vetter W, Stuetz W, Kammerer DR, Carle R, et al. Catechin and epicatechin in testa and their association with bioactive compounds in kernels of cashew nut (Anacardium occidentale L.). Food Chemistry. 2011; 128:1094–1099.
37. Trox J, Vadivel V, Vetter W, Stuetz W, Scherbaum V, Gola U, et al. Bioactive Compounds in Cashew Nut (Anacardium occidentale L.) Kernels: Effect of Different Shelling Methods. J. Agric. Food Chem. 2010;58:5341–5346. doi: 10.1021/jf904580k 20387832
38. Cardoso BR, Duarte GBS, Reis BZ, Cozzolino SMF. Brazil nuts: Nutritional composition, health benefits and safety aspects. Food Research International. 2017;100:9–18. doi: 10.1016/j.foodres.2017.08.036 28888463
39. Yang J, Liu RH, Halim L. Antioxidant and antiproliferative activities of common edible nut seeds. LWT—Food Science and Technology. 2009;42:1–8.
40. Sajilata MG, Singhal RS. Effect of irradiation and storage on the antioxidative activity of cashew nuts. Radiation Physics and Chemistry. 2006;75:297–300.
41. Barbosa Filho VM, Waczuk EP, Kamdem JP, Abolaji AO, Lacerda SR, Costa JGM, et al. Phytochemical constituents, antioxidant activity, cytotoxicity andosmotic fragility effects of Caju (Anacardium microcarpum). Industrial Crops and Products. 2014;55:280–88.
42. Aguilar YM, Rodríguez FS, Saavedra MA, Espinosa RH, Yero OM. Secondary metabolites and in vitro antibacterial activity of extracts from Anacardium occidentale L. (Cashew tree) leaves. Revista Cubana de Plantas Medicinales. 2012;17(4):320–329.
43. Slavin JL. Dietary fiber and body weight. Nutrition. 2005;21:411–418. doi: 10.1016/j.nut.2004.08.018 15797686
44. Rao TP. Role of guar fiber in appetite control. Physiology & Behavior. 2016;64:277–83.
45. Lovejoy JC, Most MM, Lefevre M, Greenway FL, Rood JC. Effect of diets enriched in almonds on insulin action and serum lipids in adults with normal glucose tolerance or type 2 diabetes. Am J Clin Nutr. 2002;76:1000–1006. doi: 10.1093/ajcn/76.5.1000 12399271
46. Lee YJ, Nam GE, Seo JA, Yoon T, Seo I, Lee JH, et al. Nut consumption has favorable effects on lipid profiles of Korean women with metabolic syndrome. Nutrition Research. 2014;34:814–820. doi: 10.1016/j.nutres.2014.08.011 25238912
47. Jaiswal YS, Tatke PA, Gabhe SY, Vaidya AB. Antidiabetic activity of extracts of Anacardium occidentale Linn. leaves on n-streptozotocin diabetic rats. Journal of Traditional and Complementary Medicine. 2016;7(4):421–27 doi: 10.1016/j.jtcme.2016.11.007 29034189
48. Damavandi RD, Eghtesadi S, Shidfar F, Heydari I, Foroushani AR. Effects of hazelnuts consumption on fasting blood sugar and lipoproteins in patients with type 2 diabetes. J Res Med Sci. 2013;18(4):314–321. 24124429
49. Sauder KA, Mccrea CE, Kris-Etherton PM, Ulbrecht JS, West SG. Effect of pistachios on lipids, lipoproteins, glucose metabolism, and insulin sensitivity in type 2 diabetes. FASEB Journal 2013;27:368–374. doi: 10.1096/fj.12-213728
50. Ma Y, Njike VY, Millet J, Dutta S, Doughty K, Treu JA, et al. Effects of Walnut Consumption on Endothelial Function in Type 2 Diabetic Subjects: A randomized controlled crossover trial. Diabetes Care. 2010;33:227–232. doi: 10.2337/dc09-1156 19880586
51. Schutte EA, Van Rooyen JM, Huisman HW, Mukuddem-Petersen J, Oosthuizen W, Hanekom SM, et al. Modulation of Baroreflex Sensitivity by Walnuts Versus Cashew Nuts in Subjects With Metabolic Syndrome. American Journal of Hypertension 2006;19:629–636. doi: 10.1016/j.amjhyper.2005.12.014 16733237
52. Almeida-Suhett CP, Graham A, Chen Y, Deuster P. Behavioral changes in male mice fed a high-fat diet are associated with IL-1β expression in specific brain regions. Physiology & Behavior. 2017;169:130–140.
53. Rosqvist F, Iggman D, Kullberg J, Cedernaes J, Johansson HE, Larsson A, et al. Overfeeding Polyunsaturated and Saturated Fat Causes Distinct Effects on Liver and Visceral Fat Accumulation in Humans. Diabetes. 2014;63(7):2356–68. doi: 10.2337/db13-1622 24550191
54. Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, presente, and future. The Lancet. 2014;383:1068–1083.
55. Kahn HS, Valdez R. Metabolic risks identified by the combination of enlarged waist and elevated triacylglycerol concentration. Am J Clin Nutr. 2003;78:928–34. doi: 10.1093/ajcn/78.5.928 14594778
56. Esmaillzadeh A, Mirmiran P, Azizi F. Clustering of metabolic abnormalities in adolescents with the hypertriglyceridemic waist phenotype. Am J Clin Nutr. 2006;83:36–46. doi: 10.1093/ajcn/83.1.36 16400047
57. Yang MY, Chan KC, Lee YJ, Chang XZ, Wu CH, Wang CJ. Sechium edule Shoot Extracts and Active Components Improve Obesity and a Fatty Liver That Involved Reducing Hepatic Lipogenesis and Adipogenesis in High-Fat-Diet-Fed Rats. J. Agric. Food Chem. 2015;63:4587−4596. doi: 10.1021/acs.jafc.5b00346 25912298
58. Vaidya HB, Gangadaran S, Cheema SK. An obesogenic diet enriched with blue mussels protects against weight gain and lowers cholesterol levels in C57BL/6 mice. Nutrition Research. 2017;46:31–37. doi: 10.1016/j.nutres.2017.07.004 29173649
59. Belchior T, Paschoal VA, Magdalon J, Chimin P, Farias TM, Chaves-Filho AB, et al. Omega-3 fatty acids protect from diet induced obesity, glucose intolerance, and adipose tissue inflammation through PPARγ-dependent and PPARγ-independent actions. Mol. Nutr. Food. Res. 2015;59:957–967. doi: 10.1002/mnfr.201400914 25641959
60. Guo X, Sinclair AJ, Kaur G, Li D. Differential effects of EPA, DPA and DHA on cardio-metabolic risk factors in high-fat diet fed mice. Prostaglandins Leukotrienes and Essential Fatty Acids. 2018;136:47–55. doi: 10.1016/j.plefa.2017.09.011 29113747
61. Picklo MJ, Idsoa J, Seegerc DR, Aukemad HM, Murphyc EJ. Comparative effects of high oleic acid vs high mixed saturated fatty acid obesogenic diets upon PUFA metabolism in mice. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2017;119:25–37.
62. Fabbrini E, Sullivan S, Klein S. Obesity and nonalcoholic fatty liver disease: Biochemical, metabolic, and clinical implications. Hepatology. 2010;51:679–89. doi: 10.1002/hep.23280 20041406
63. Lee J, Homma T, Fujii J. Mice in the early stage of liver steatosis caused by a high fat diet are resistant to thioacetamide-induced hepatotoxicity and oxidative stress. Toxicology Letters. 2017;277:92–103. doi: 10.1016/j.toxlet.2017.06.005 28642009
64. Kristensen M, Jensen MG, Aarestrup J, Petersen KE, Sondergaard L, Mikkelsen MS, et al. Flaxseed dietary fibers lower cholesterol and increase fecal fat excretion, but magnitude of effect depend on food type. Nutrition & Metabolism. 2012;3:9–8. doi: 10.1186/1743-7075-9-8 22305169
65. Mcrae MP. Dietary fiber is beneficial for the prevention of cardiovascular disease: An umbrella review of meta-analyses. Journal of Chiropractic Medicine. 2017;16(4):289–299. doi: 10.1016/j.jcm.2017.05.005 29276461
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts