Ligand-induced conformational selection predicts the selectivity of cysteine protease inhibitors
Autoři:
Geraldo Rodrigues Sartori aff001; Andrei Leitão aff001; Carlos A. Montanari aff001; Charles A. Laughton aff002
Působiště autorů:
Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
aff001; School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, Nottingham, England, United Kingdom
aff002
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0222055
Souhrn
Cruzain, a cysteine protease of Trypanosoma cruzi, is a validated target for the treatment of Chagas disease. Due to its high similarity in three-dimensional structure with human cathepsins and their sequence identity above 70% in the active site regions, identifying potent but selective cruzain inhibitors with low side effects on the host organism represents a significant challenge. Here a panel of nitrile ligands with varying potencies against cathepsin K, cathepsin L and cruzain, are studied by molecular dynamics simulations as both non-covalent and covalent complexes. Principal component analysis (PCA), identifies and quantifies patterns of ligand-induced conformational selection that enable the construction of a decision tree which can predict with high confidence a low-nanomolar inhibitor of each of three proteins, and determine the selectivity for one against others.
Klíčová slova:
Principal component analysis – Cysteine – Biochemical simulations – Decision trees – Molecular dynamics – Sulfur – Nitriles – Cysteine proteases
Zdroje
1. Kamphuis IG, Kalk KH, Swarte MBA, Drenth J. Structure of papain refined at 1.65 Å resolution. J Mol Biol. 1984;179(2):233–56. doi: 10.1016/0022-2836(84)90467-4 6502713
2. Rawlings ND, Barrett AJ, Finn R. Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2015;44(D1):D343–50. doi: 10.1093/nar/gkv1118 26527717
3. Sajid M, McKerrow JH. Cysteine proteases of parasitic organisms. Mol Biochem Parasitol. 2002;120(1):1–21. doi: 10.1016/s0166-6851(01)00438-8 11849701
4. Brix K, Dunkhorst A, Mayer K, Jordans S. Cysteine cathepsins: Cellular roadmap to different functions. Biochimie. 2008;90:194–207. doi: 10.1016/j.biochi.2007.07.024 17825974
5. Turk V. Lysosomal cysteine proteases:facts and opportunities. EMBO J. 2001;20(17):4629–33. doi: 10.1093/emboj/20.17.4629 11532926
6. Reiser J, Adair B, Reinheckel T. Specialized roles for cysteine cathepsins in health and disease. J. Clin. Invest. 2010;120:3421–31. doi: 10.1172/JCI42918 20921628
7. Fonović M, Turk B. Cysteine cathepsins and their potential in clinical therapy and biomarker discovery. Proteomics—Clinical Applications. 2014;8:416–26. doi: 10.1002/prca.201300085 24470315
8. McKerrow JH, Engel JC. Cysteine Protease Inhibitors as Chemotherapy for Parasitic Infections. Bioorg Med Chem. 1999;7(4):639–44. doi: 10.1016/s0968-0896(99)00008-5 10353643
9. Engel JC, Doyle PS, Hsieh I, McKerrow JH. Cysteine protease inhibitors cure an experimental Trypanosoma cruzi infection. J Exp Med. 1998;188(4):725–34. doi: 10.1084/jem.188.4.725 9705954
10. Kos J, Mitrovic A, Mirkovic B. The current stage of cathepsin B inhibitors as potential anticancer agents. Future Med Chem. 2014;6(11):1355–71. doi: 10.4155/fmc.14.73 25163003
11. Feurer E, Chapurlat R. Emerging drugs for osteoporosis. Expert Opin Emerg Drugs. 2014;19(3):385–95. doi: 10.1517/14728214.2014.936377 24995794
12. Reginster JY, Neuprez A, Beaudart C, Lecart MP, Sarlet N, Bernard D, et al. Antiresorptive drugs beyond bisphosphonates and selective oestrogen receptor modulators for the management of postmenopausal osteoporosis. Drugs and Aging. 2014;31:413–24. doi: 10.1007/s40266-014-0179-z 24797286
13. Beaulieu C, Isabel E, Fortier A, Massé F, Mellon C, Méthot N, et al. Identification of potent and reversible cruzipain inhibitors for the treatment of Chagas disease. Bioorganic Med Chem Lett. 2010;20(24):7444–9.
14. Wiggers HJ, Rocha JR, Fernandes WB, Sesti-Costa R, Carneiro ZA, Cheleski J, et al. Non-peptidic Cruzain Inhibitors with Trypanocidal Activity Discovered by Virtual Screening and In Vitro Assay. PLoS Negl Trop Dis. 2013;7(8):e2370. doi: 10.1371/journal.pntd.0002370 23991231
15. Ferreira RS, Dessoy MA, Pauli I, Souza ML, Krogh R, Sales AIL, et al. Synthesis, biological evaluation, and structure-activity relationships of potent noncovalent and nonpeptidic cruzain inhibitors as anti-Trypanosoma cruzi agents. J Med Chem. 2014;57(6):2380–92. doi: 10.1021/jm401709b 24533839
16. Mane UR, Gupta RC, Nadkarni SS, Giridhar RR, Naik PP, Yadav MR. Falcipain inhibitors as potential therapeutics for resistant strains of malaria: a patent review. Expert Opin Ther Pat. 2013;23(2):165–87. doi: 10.1517/13543776.2013.743992 23228154
17. Marco M, Miguel Coteron J. Falcipain Inhibition as a Promising Antimalarial Target. Curr Top Med Chem. 2012;12(5):408–44. doi: 10.2174/156802612799362913 22242849
18. Coura JR, Viñas PA. Chagas disease: a new worldwide challenge. Nature. 2010;465(7301 SUPPL.):S6–7.
19. Rottenberg ME, Örn A. Chagas’ Disease. In: Immunology. 1998. p. 521.
20. Guhl F, Schmunis GA, Yadon ZE. Chagas disease: A Latin American health problem becoming a world health problem. Acta Trop. 2010;115(1):14–21.
21. Lee BY, Bacon KM, Bottazzi ME, Hotez PJ. Global economic burden of Chagas disease: A computational simulation model. Lancet Infect Dis. 2013;13(4):342–8. doi: 10.1016/S1473-3099(13)70002-1 23395248
22. Pinazo MJ, Muñoz J, Posada E, López-Chejade P, Gállego M, Ayala E, et al. Tolerance of benznidazole in treatment of Chagas’ disease in adults. Antimicrob Agents Chemother. 2010;54(11):4896–9. doi: 10.1128/AAC.00537-10 20823286
23. Martínez J, Campetella O, Frasch ACC, Cazzulo JJ. The reactivity of sera from chagasic patients against different fragments of cruzipain, the major cysteine proteinase from Trypanosoma cruzi, suggests the presence of defined antigenic and catalytic domains. Immunol Lett. 1993;35(2):191–6. doi: 10.1016/0165-2478(93)90090-o 7685319
24. Duschak VG, Couto AS. Cruzipain, the major cysteine protease of Trypanosoma cruzi: a sulfated glycoprotein antigen as relevant candidate for vaccine development and drug target. A review. Curr Med Chem. 2009;16(24):3174–202. doi: 10.2174/092986709788802971 19689291
25. Åslund L, Henriksson J, Campetella O, Frasch ACC, Pettersson U, Cazzulo JJ. The C-terminal extension of the major cysteine proteinase (cruzipain) from Trypanosoma cruzi. Mol Biochem Parasitol. 1991;45(2):345–7. doi: 10.1016/0166-6851(91)90103-d 2038364
26. Ferreira RS, Bryant C, Ang KKH, McKerrow JH, Shoichet BK, Renslo AR. Divergent Modes of Enzyme Inhibition in a Homologous Structure−Activity Series. J Med Chem. 2009 Aug;52(16):5005–8. doi: 10.1021/jm9009229 19637873
27. Otto H, Schirmeister T. Cysteine Proteases and Their Inhibitors. Chem Rev. 1997;97(1):133–72. doi: 10.1021/cr950025u 11848867
28. Götz MG, Caffrey CR, Hansell E, McKerrow JH, Powers JC. Peptidyl allyl sulfones: a new class of inhibitors for clan CA cysteine proteases. Bioorg Med Chem. 2004 Oct;12(19):5203–11. doi: 10.1016/j.bmc.2004.07.016 15351403
29. Scheidt KA, Roush WR, McKerrow JH, Selzer PM, Hansell E, Rosenthal PJ. Structure-based design, synthesis and evaluation of conformationally constrained cysteine protease inhibitors. Bioorg Med Chem. 1998;6(12):2477–94. doi: 10.1016/s0968-0896(98)80022-9 9925304
30. Ferreira RS, Simeonov A, Jadhav A, Eidam O, Mott BT, Keiser MJ, et al. Complementarity between a docking and a high-throughput screen in discovering new cruzain inhibitors. J Med Chem. 2010;53(13):4891–905. doi: 10.1021/jm100488w 20540517
31. Mott BT, Ferreira RS, Simeonov A, Jadhav A, Ang KK-H, Leister W, et al. Identification and Optimization of Inhibitors of Trypanosomal Cysteine Proteases: Cruzain, Rhodesain, and TbCatB. J Med Chem. 2010;53(1):52–60. doi: 10.1021/jm901069a 19908842
32. Dos Santos AM, Cianni L, De Vita D, Rosini F, Leitão A, Laughton CA, et al. Experimental study and computational modelling of cruzain cysteine protease inhibition by dipeptidyl nitriles. Phys Chem Chem Phys. 2018;20(37):24317–28. doi: 10.1039/c8cp03320j 30211406
33. Waldner BJ, Fuchs JE, Huber RG, Von Grafenstein S, Schauperl M, Kramer C, et al. Quantitative Correlation of Conformational Binding Enthalpy with Substrate Specificity of Serine Proteases. J Phys Chem B. 2016;120(2):299–308. doi: 10.1021/acs.jpcb.5b10637 26709959
34. Teilum K, Olsen JG, Kragelund BB. Functional aspects of protein flexibility. Cell Mol Life Sci. 2009;66(14):2231–47. doi: 10.1007/s00018-009-0014-6 19308324
35. Huber R, Bennett WS. Functional significance of flexibility in proteins. Pure Appl Chem. 1982;54(12):2489–500.
36. Hammes GG, Chang Y-C, Oas TG. Conformational selection or induced fit: a flux description of reaction mechanism. Proc Natl Acad Sci U S A. 2009;106(33):13737–41. doi: 10.1073/pnas.0907195106 19666553
37. Koshland DE. Application of a Theory of Enzyme Specificity to Protein Synthesis. Proc Natl Acad Sci. 1958;44(2):98–104. doi: 10.1073/pnas.44.2.98 16590179
38. Ma B, Kumar S, Tsai CJ, Nussinov R. Folding funnels and binding mechanisms. Protein Eng. 1999;12(9):713–20. doi: 10.1093/protein/12.9.713 10506280
39. Dobbins SE, Lesk VI, Sternberg MJE. Insights into protein flexibility: The relationship between normal modes and conformational change upon protein-protein docking. Proc Natl Acad Sci U S A. 2008;105(30):10390–5. doi: 10.1073/pnas.0802496105 18641126
40. Wlodarski T, Zagrovic B. Conformational selection and induced fit mechanism underlie specificity in noncovalent interactions with ubiquitin. Proc Natl Acad Sci. 2009;106(46):19346–51. doi: 10.1073/pnas.0906966106 19887638
41. Gauthier JY, Chauret N, Cromlish W, Desmarais S, Duong LT, Falgueyret JP, et al. The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg Med Chem Lett. 2008;18(3):923–8. doi: 10.1016/j.bmcl.2007.12.047 18226527
42. Asaad N, Bethel PA, Coulson MD, Dawson JE, Ford SJ, Gerhardt S, et al. Dipeptidyl nitrile inhibitors of Cathepsin L. Bioorganic Med Chem Lett. 2009;19(15):4280–3.
43. Black WC, Bayly CI, Davis DE, Desmarais S, Falgueyret J-P, Léger S, et al. Trifluoroethylamines as amide isosteres in inhibitors of cathepsin K. Bioorganic Med Chem Lett. 2005;15(21):4741–4.
44. Kerr ID, Lee JH, Farady CJ, Marion R, Rickert M, Sajid M, et al. Vinyl sulfones as antiparasitic agents and a structural basis for drug design. J Biol Chem. 2009;284(38):25697–703. doi: 10.1074/jbc.M109.014340 19620707
45. McGrath ME, Klaus JL, Barnes MG, Bromme D. Crystal structure of human cathepsin K complexed with a potent inhibitor. Nat Struct Mol Biol. 1997;4(2):105–9.
46. Hardegger LA, Kuhn B, Spinnler B, Anselm L, Ecabert R, Stihle M, et al. Halogen Bonding at the Active Sites of Human Cathepsin L and MEK1 Kinase: Efficient Interactions in Different Environments. ChemMedChem. 2011;6(11):2048–54. doi: 10.1002/cmdc.201100353 21898833
47. Li CS, Deschenes D, Desmarais S, Falgueyret JP, Gauthier JY, Kimmel DB, et al. Identification of a potent and selective non-basic cathepsin K inhibitor. Bioorganic Med Chem Lett. 2006;16(7):1985–9.
48. Avelar LAA, Camilo CD, De Albuquerque S, Fernandes WB, Gonçalez C, Kenny PW, et al. Molecular design, synthesis and trypanocidal activity of dipeptidyl nitriles as cruzain inhibitors. PLoS Negl Trop Dis. 2015;9(7):1–24.
49. Maestro. version 9. Schrödinger Release 2014–2. New York, NY; 2014.
50. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09, Gaussian, Inc. Wallingford CT. Gaussian, Inc. Wallingford CT. 2009.
51. Cornell WD, Cieplak P, Bayly CI, Kollman P a., Kollmann PA. Application of RESP Charges To Calculate Conformational Energies, Hydrogen Bond Energies, and Free Energies of Solvation. J Am Chem Soc. 1993;115(7):9620–31.
52. Dupradeau FY, Pigache A, Zaffran T, Savineau C, Lelong R, Grivel N, et al. The R.E.D. tools: Advances in RESP and ESP charge derivation and force field library building. Phys Chem Chem Phys. 2010;12(28):7821–39. doi: 10.1039/c0cp00111b 20574571
53. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general Amber force field. J Comput Chem. 2004;25(9):1157–74. doi: 10.1002/jcc.20035 15116359
54. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1989;79:926–35.
55. Ryckaert J-P, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys. 1977;23(3):327–41.
56. Shkurti A, Goni R, Andrio P, Breitmoser E, Bethune I, Orozco M, et al. pyPcazip: A PCA-based toolkit for compression and analysis of molecular simulation data. SoftwareX. 2016;5:44–50.
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts