The optimal delivery time and order quantity in an oligopoly market with time-sensitive customers
Autoři:
Haijiao Li aff001; Weijin Xu aff001; Kuan Yang aff001
Působiště autorů:
School of Business Adminstration, Hunan University, Changsha, Hunan, China
aff001; Supply Chain and Logistics Optimization Research Central, University of Windsor, Windsor, Ontario, Canada
aff002
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0225436
Souhrn
With the development of e-commerce, delivery time is regarded as a key competitive advantage in an oligopoly market, as shortening the delivery time can stimulate demand for products. Many firms adopt a variety of strategies to shorten delivery time, and holding sufficient inventory is reported as an effective way. This study integrates a market share attraction model based on delivery time competition with the traditional inventory model to determine the optimal delivery time and order quantity. With the use of supermodular game method, we investigate the effect of changes in marketing and operations factors on the equilibrium delivery time and order quantity in non-dominated and dominated oligopolistic markets. The results reveal that the equilibrium delivery time and order quantity exhibit a directional response to changes in marketing and operations factors, and the response differs between the non-dominated oligopoly and the dominated oligopoly. Furthermore, under a cooperative oligopolistic market with asymmetry, it is beneficial for the firms with high competitive strength to adopt the delivery time strategy, but it fails to do so for the firm with the low competitive strength. Lastly, numerical analysis suggests that marketing factors play a more important role in affecting equilibrium measures than operations factors.
Klíčová slova:
Economics – Marketing – Structure of markets – Game theory – Ellipsoids – Monopolies – Oligopolies – Factorial design
Zdroje
1. So K C, Song J S. Price, delivery time guarantees and capacity selection. European Journal of Operational Research. 1998; 111(1): 28–49. doi: 10.1016/S0377-2217(97)00314-7
2. Nguyen T H, Wright M. Capacity and lead-time management when demand for service is seasonal and lead-time sensitive. European Journal of Operational Research. 2015; 247(2): 588–595. doi: 10.1016/j.ejor.2015.06.005
3. Shi C, Kamran M. Inventory Control and Delivery Time Quotation for Assembly Supply Chains. Operations Research. 2018; 66(4): 1004–1022. doi: 10.1287/opre.2017.1704
4. Stalk G Jr, Hout T M. Competing Against Time. Research-Technology Management. 1990. doi: 10.1080/08956308.1990.11670646
5. Boyaci T, Ray S. Product Differentiation and Capacity Cost Interaction in Time and Price Sensitive Markets. Manufacturing & Service Operations Management. 2003; 5(1): 18–36. doi: 10.1287/msom.5.1.18.12757
6. Qian L. Market-based supplier selection with price, delivery time, and service level dependent demand. International Journal of Production Economics. 2014; 147(C): 697–706. doi: 10.1016/j.ijpe.2013.07.015
7. Liu L, Parlar M, Zhu S X. Pricing and Lead Time Decisions in Decentralized Supply Chains. Management Science. 2007; 53(5): 713–725. doi: 10.1287/mnsc.1060.0653
8. Cachon Gérard P., Gürhan Kök A. Implementation of the Newsvendor Model with Clearance Pricing: How to (and How Not to) Estimate a Salvage Value. Manufacturing and Service Operations Management. 2007; 9(3): 276–290. doi: 10.1287/msom.1060.0145
9. Cui R M, Li M, Li Q. Value of High-Quality Logistics: Evidence from a Clash Between SF Express and Alibaba. Management Science, 2019; Forthcoming.
10. Joerss M, Schröder J, Neuhaus F, Klink C, Mann F. Parcel delivery: The future of last mile. McKinsey & Company. 2016 Sep.
11. Andrew M. Chinese e-commerce companies are growing by leaps and bounds, but there’s still one problem. 2016.
12. Ching W K. Optimal (s, S) policies with delivery time guarantees for manufacturing systems with early set-up. Computers & Industrial Engineering. 2001; 40(3): 249–257. doi: 10.1016/S0360-8352(01)00024-9
13. Allon G, Federgruen A. Competition in Service Industries. Operations Research. 2007; 55(1):37–55. doi: 10.1287/opre.1060.0337
14. Li L. The Role of Inventory in Delivery-Time Competition. Management Science. 1992; 38(2): 182–197. doi: 10.1287/mnsc.38.2.182
15. Bahrami H. The emerging flexible organization: Perspectives from Silicon Valley. California Management Review. 1992; 34: 34–52. doi: 10.2307/41166702
16. Mesak H I, Bari A., Michael S. L, Han F, On modeling the advertising-operations interface under asymmetric competition, European Journal of Operational Research. 2015; 240: 278–291. doi: 10.1016/j.ejor.2014.07.009
17. Balasubramanian S, Bhardwaj P. When not all conflict is bad: manufacturing-marketing conflict and strategic incentive design. Management Science. 2004; 50(4): 489–502. doi: 10.1287/mnsc.1030.0180
18. Karmarkar U, Lele M. The marketing/manufacturing interface: strategic issues, in Managing Business Interfaces: Marketing, Engineering and Manufacturing Perspectives, Chakravarty A.K. and Eliashberg J. (eds.). Kluwer Norwell, MA. 2004; 311–328.
19. Ray S, Jewkes E M. Customer lead time management when both demand and price are lead time sensitive. European Journal of Operational Research. 2004; 153(3): 769–781. doi: 10.1016/S0377-2217(02)00655-0
20. Li Y, Lin Q, Ye F. Pricing and promised delivery lead time decisions with a risk-averse agent. International Journal of Production Research. 2014; 52(12): 3518–3537. doi: 10.1080/00207543.2013.871592
21. Lederer P J, Li L. Pricing, Production, Scheduling, and Delivery-Time Competition. Operations Research. 1997; 45(3): 407–420. doi: 10.1287/opre.45.3.407
22. So K C. Price and Time Competition for Service Delivery. Manufacturing & Service Operations Management. 2000; 2(4): 392–409. doi: 10.1287/msom.2.4.392.12336
23. Bernstein F, Federgruen A. A General Equilibrium Model for Industries with Price and Service Competition. Operations Research. 2004; 52(6): 868–886. doi: 10.1287/opre.1040.0149
24. Shang W, Liu L. Promised Delivery Time and Capacity Games in Time-Based Competition. Mathematics of Operations Research. 2011; 57(3): 599–610.
25. Hill A V, Khosla I S. Models for optimal lead time reduction. Production and Operations Management. 1992; 1(2): 185–197. doi: 10.1111/j.1937-5956.1992.tb00351.x
26. Yang J S, Pan J C. Just-in-time purchasing: an integrated inventory model involving deterministic variable lead time and quality improvement investment. 2004. 42(5): 853–863.
27. Yang B B, Geunes J. Inventory and lead time planning with lead-time-sensitive demand, IIE Transactions. 2007; 39(5): 439–452. doi: 10.1080/07408170600838456
28. Selvarajah E, Steiner G. Approximation Algorithms for the Supplier’s Supply Chain Scheduling Problem to Minimize Delivery and Inventory Holding Costs. Operations Research. 2009; 57(2): 426–438. doi: 10.1287/opre.1080.0622
29. Jha J K, Shanker K. A coordinated two-phase approach for operational decisions with vehicle routing in a single-vendor multi-buyer system. International Journal of Production Research. 2013; 51(5): 1426–1450. doi: 10.1080/00207543.2012.693962
30. Sadjadi S J, Makui A, Dehghani E, Pourmohammad M. Applying queuing approach for a stochastic location-inventory problem with two different mean inventory considerations. Applied Mathematical Modelling. 2016; 40: 578–596. doi: 10.1016/j.apm.2015.06.010
31. Yang J Q, Zhang X M, Fu H Y, Liu C. Inventory competition in a dual-channel supply chain with delivery lead time consideration. Applied Mathematical Modelling. 2017; 42: 675–692. doi: 10.1016/j.apm.2016.10.050
32. Tang C S. A review of marketing-operations interface models: From co-existence to coordination and collaboration. International Journal of Production Economics. 2010; 125(1): 22–40. doi: 10.1016/j.ijpe.2010.01.014
33. Piercy N. Framing the problematic relationship between the marketing and operations functions. Journal of Strategic Marketing. 2007; 15(2): 185–207. doi: 10.1080/09652540701319037
34. Piercy N. Improving marketing-operations cross-functional relationships. Journal of Strategic Marketing. 2010; 18(4): 337–356. doi: 10.1080/09652541003768095
35. Erickson G M. A differential game model of the marketing-operations interface. European Journal of Operational Research. 2011; 211(2): 394–402. doi: 10.1016/j.ejor.2010.11.016
36. Liu G, Zhang J, Tang W. Strategic transfer pricing in a marketing-operations interface with quality level and advertising dependent goodwill. Omega. 2015; 56: 1–15. doi: 10.1016/j.omega.2015.01.004
37. Sale R S, Mesak H I, Inman R A. A dynamic marketing-operations interface model of new product updates. European Journal of Operational Research. 2017; 257(1): 233–242. doi: 10.1016/j.ejor.2016.07.051
38. Chatterjee S, Slotnick S A, Sobel M J. Delivery guarantees and the interdependence of marketing and operations, Production and Operations Management. 2002; 11(3): 393–410. doi: 10.1111/j.1937-5956.2002.tb00193.x
39. Ho T H, Zheng Y S. Setting Customer Expectation in Service Delivery: An Integrated Marketing-Operations Perspective. Management Science. 2004; 50(4): 479–488. doi: 10.1287/mnsc.1040.0170
40. Pekgün P, Griffin P M, Keskinocak P. Coordination of marketing and production for price and leadtime decisions, IIE Transactions. 2008; 40(1): 12–30. doi: 10.1080/07408170701245346
41. Wilson R H. A scientific routine for stock control. Harvard Business Review. 1934; 13(1): 116–128.
42. Cooper L G, Nakanishi M. Market-Share Analysis. Kluwer, Norwell, Massachusetts. 1988.
43. Lilien G L, Kother P, Moorthy K S. Marketing Models. Prentice-Hall, Englewood Cliffs, New Jersey. 1992.
44. Milgrom P, Roberts J. Rationalizability, Learning, and Equilibrium in Games with Strategic Complements. Econometrica. 1990; 58(6): 1255–1277. doi: 10.2307/2938316
45. Gruca T S, Kumar K R, Sudharshan D. An Equilibrium Analysis of Defensive Response to Entry Using a Coupled Response Function Model. Marketing Science. 1992; 11(4): 348–358. doi: 10.1287/mksc.11.4.348
46. Ha A Y, Li L, Ng S M. Price and Delivery Logistics Competition in a Supply Chain. Management Science. 2003; 49(9): 1139–1153. doi: 10.1287/mnsc.49.9.1139.16567
47. Nevo A. Mergers with differentiated products: The case of the ready-to-eat cereal. The RAND Journal of Economics. 2000; 31(3): 395–421.
48. Mukherjee T K, Kiymaz H, Baker H K. Merger motives and target valuation: A survey of evidence from CFOs. Journal of Applied Finance. 2004; 14(2): 7–24.
49. Mesak H I. On the generalizability of advertising pulsation monopoly results to an oligopoly. European Journal of Operational Research. 1999; 117(3): 429–449. doi: 10.1016/S0377-2217(98)00242-2
50. Kutner M H, Nachtsheim C J, Neter J, Li W. Applied linear statistical models. McGraw-Hill Irwin. 2005.
51. Cho S H, Wang X. Newsvendor Mergers. SSRN Electronic Journal. 2017; 63(2): 298–316.
52. Pannell D J. Sensitivity analysis of normative economic models: theoretical framework and practical strategies. Agricultural Economics of Agricultural Economists. 1996; 16(2): 139–152.
53. Gallego G, Huh W T, Kang W, Phillips R. Price competition with the attraction demand model: Existence of unique equilibrium and its stability. Manufacturing & Service Operations Management. 2006; 8(4): 359–375. doi: 10.1287/msom.1060.0115
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts