Stochastically modeling multiscale stationary biological processes
Autoři:
Michael A. Rowland aff001; Michael L. Mayo aff001; Edward J. Perkins aff001; Natàlia Garcia-Reyero aff001
Působiště autorů:
Environmental Laboratory, U.S. Army Corps of Engineers, Vicksburg, MS, United States of America
aff001
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0226687
Souhrn
Large scale biological responses are inherently uncertain, in part as a consequence of noisy systems that do not respond deterministically to perturbations and measurement errors inherent to technological limitations. As a result, they are computationally difficult to model and current approaches are notoriously slow and computationally intensive (multiscale stochastic models), fail to capture the effects of noise across a system (chemical kinetic models), or fail to provide sufficient biological fidelity because of broad simplifying assumptions (stochastic differential equations). We use a new approach to modeling multiscale stationary biological processes that embraces the noise found in experimental data to provide estimates of the parameter uncertainties and the potential mis-specification of models. Our approach models the mean stationary response at each biological level given a particular expected response relationship, capturing variation around this mean using conditional Monte Carlo sampling that is statistically consistent with training data. A conditional probability distribution associated with a biological response can be reconstructed using this method for a subset of input values, which overcomes the parameter identification problem. Our approach could be applied in addition to dynamical modeling methods (see above) to predict uncertain biological responses over experimental time scales. To illustrate this point, we apply the approach to a test case in which we model the variation associated with measurements at multiple scales of organization across a reproduction-related Adverse Outcome Pathway described for teleosts.
Klíčová slova:
Probability distribution – Toxicology – Androgens – Fecundity – Estrogens – Probability density – Receptor physiology – Distribution curves
Zdroje
1. Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic gene expression in a single cell. Science. 2002;297(5584):1183–6. doi: 10.1126/science.1070919 12183631
2. Ahrends R, Ota A, Kovary KM, Kudo T, Park BO, Teruel MN. Controlling low rates of cell differentiation through noise and ultrahigh feedback. Science. 2014;344(6190):1384–9. doi: 10.1126/science.1252079 24948735
3. Balazsi G, van Oudenaarden A, Collins JJ. Cellular decision making and biological noise: from microbes to mammals. Cell. 2011;144(6):910–25. doi: 10.1016/j.cell.2011.01.030 21414483
4. Fallahi-Sichani M, Honarnejad S, Heiser LM, Gray JW, Sorger PK. Metrics other than potency reveal systematic variation in responses to cancer drugs. Nat Chem Biol. 2013;9(11):708–14. doi: 10.1038/nchembio.1337 24013279
5. Feinerman O, Veiga J, Dorfman JR, Germain RN, Altan-Bonnet G. Variability and robustness in T cell activation from regulated heterogeneity in protein levels. Science. 2008;321(5892):1081–4. doi: 10.1126/science.1158013 18719282
6. Spencer SL, Gaudet S, Albeck JG, Burke JM, Sorger PK. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature. 2009;459(7245):428–32. doi: 10.1038/nature08012 19363473
7. Suderman R, Bachman JA, Smith A, Sorger PK, Deeds EJ. Fundamental trade-offs between information flow in single cells and cellular populations. Proc Natl Acad Sci U S A. 2017;114(22):5755–60. doi: 10.1073/pnas.1615660114 28500273
8. Irizarry RA, Warren D, Spencer F, Kim IF, Biswal S, Frank BC, et al. Multiple-laboratory comparison of microarray platforms. Nat Methods. 2005;2(5):345–50. doi: 10.1038/nmeth756 15846361
9. MAQC Consortium. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nature Biotechnology. 2006;24:1151–61. doi: 10.1038/nbt1239 16964229
10. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nature Reviews Genetics. 2010;11:733–9. doi: 10.1038/nrg2825 20838408
11. Holyoak M, Casagrandi R, Nathan R, Revilla E, Spiegel O. Trends and missing parts in the study of movement ecology. Proc Natl Acad Sci U S A. 2008;105(49):19060–5. doi: 10.1073/pnas.0800483105 19060194
12. Nathan R. An emerging movement ecology paradigm. Proc Natl Acad Sci U S A. 2008;105(49):19050–1. doi: 10.1073/pnas.0808918105 19060197
13. Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, et al. A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci U S A. 2008;105(49):19052–9. doi: 10.1073/pnas.0800375105 19060196
14. Smouse PE, Focardi S, Moorcroft PR, Kie JG, Forester JD, Morales JM. Stochastic modelling of animal movement. Philos Trans R Soc Lond B Biol Sci. 2010;365(1550):2201–11. doi: 10.1098/rstb.2010.0078 20566497
15. Gunawardena J. Models in Systems: the Parameter Problem and the Meanings of Robustness. In: Lodhi HM, Muggletone SH, editors. Elements of Computational Systems Biology. Bioinformatics: Computational Techniques and Engineering. Hoboken: John Wiley & Sons; 2010.
16. Lillacci G, Khammash M. Parameter estimation and model selection in computational biology. PLoS Comput Biol. 2010;6(3):e1000696. doi: 10.1371/journal.pcbi.1000696 20221262
17. Zhan C, Yeung LF. Parameter estimation in systems biology models using spline approximation. BMC Syst Biol. 2011;5:14. doi: 10.1186/1752-0509-5-14 21255466
18. Penas DR, Gonzalez P, Egea JA, Doallo R, Banga JR. Parameter estimation in large-scale systems biology models: a parallel and self-adaptive cooperative strategy. BMC Bioinformatics. 2017;18(1):52. doi: 10.1186/s12859-016-1452-4 28109249
19. Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD, et al. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem. 2010;29(3):730–41. doi: 10.1002/etc.34 20821501
20. Perkins EJ, Gayen K, Shoemaker JE, Antczak P, Burgoon L, Falciani F, et al. Chemical hazard prediction and hypothesis testing using quantitative adverse outcome pathways. ALTEX. 2019;36(1):91–102. doi: 10.14573/altex.1808241 30332685
21. Efron B, Tibshirani RJ. An Introduction to the Bootstrap. Boca Raton: CRC Press L.L.C.; 1998.
22. Miller DH, Jensen KM, Villeneuve DL, Kahl MD, Makynen EA, Durhan EJ, et al. Linkage of biochemical responses to population-level effects: a case study with vitellogenin in the fathead minnow (Pimephales promelas). Environ Toxicol Chem. 2007;26(3):521–7. doi: 10.1897/06-318r.1 17373517
23. Jensen KM, Makynen EA, Kahl MD, Ankley GT. Effects of the feedlot contaminant 17alpha-trenbolone on reproductive endocrinology of the fathead minnow. Environ Sci Technol. 2006;40(9):3112–7. doi: 10.1021/es052174s 16719119
24. Ankley GT, Miller DH, Jensen KM, Villeneuve DL, Martinovic D. Relationship of plasma sex steroid concentrations in female fathead minnows to reproductive success and population status. Aquat Toxicol. 2008;88(1):69–74. doi: 10.1016/j.aquatox.2008.03.005 18433896
25. Ankley GT, Jensen KM, Durhan EJ, Makynen EA, Butterworth BC, Kahl MD, et al. Effects of two fungicides with multiple modes of action on reproductive endocrine function in the fathead minnow (Pimephales promelas). Toxicol Sci. 2005;86(2):300–8. doi: 10.1093/toxsci/kfi202 15901916
26. Wilson VS, Lambright C, Ostby J, Gray LE Jr. In vitro and in vivo effects of 17beta-trenbolone: a feedlot effluent contaminant. Toxicol Sci. 2002;70(2):202–11. doi: 10.1093/toxsci/70.2.202 12441365
27. Villeneuve DL, Knoebl I, Kahl MD, Jensen KM, Hammermeister DE, Greene KJ, et al. Relationship between brain and ovary aromatase activity and isoform-specific aromatase mRNA expression in the fathead minnow (Pimephales promelas). Aquat Toxicol. 2006;76(3–4):353–68. doi: 10.1016/j.aquatox.2005.10.016 16330110
28. Ankley GT, Jensen KM, Makynen EA, Kahl MD, Korte JJ, Hornung MW, et al. Effects of the androgenic growth promoter 17-beta-trenbolone on fecundity and reproductive endocrinology of the fathead minnow. Environ Toxicol Chem. 2003;22(6):1350–60. 12785594
29. Ankley GT, Kahl MD, Jensen KM, Hornung MW, Korte JJ, Makynen EA, et al. Evaluation of the aromatase inhibitor fadrozole in a short-term reproduction assay with the fathead minnow (Pimephales promelas). Toxicological Sciences. 2002;67(1):121–30. doi: 10.1093/toxsci/67.1.121 11961225
30. Chow CC, Ong KM, Dougherty EJ, Simons SS Jr. Inferring mechanisms from dose-response curves. Methods Enzymol. 2011;487:465–83. doi: 10.1016/B978-0-12-381270-4.00016-0 21187235
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts