Virulence beneath the fleece; a tale of foot-and-mouth disease virus pathogenesis in sheep
Autoři:
Carolina Stenfeldt aff001; Juan M. Pacheco aff001; Nagendrakumar B. Singanallur aff003; Wilna Vosloo aff003; Luis L. Rodriguez aff001; Jonathan Arzt aff001
Působiště autorů:
Department of Agriculture, Foreign Animal Disease Research Unit, Agricultural Research Service, U.S., Plum Island Animal Disease Center, NY, Greenport, United States of America
aff001; Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States of America
aff002; Australian Animal Health Laboratory, CSIRO-Health and Biosecurity, Geelong, Australia
aff003
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0227061
Souhrn
Foot-and-mouth disease virus (FMDV) is capable of infecting all cloven-hoofed domestic livestock species, including cattle, pigs, goats, and sheep. However, in contrast to cattle and pigs, the pathogenesis of FMDV in small ruminants has been incompletely elucidated. The objective of the current investigation was to characterize tissue- and cellular tropism of early and late stages of FMDV infection in sheep following three different routes of simulated natural virus exposure. Extensive post-mortem harvest of tissue samples at pre-determined time points during early infection (24 and 48 hours post infection) demonstrated that tissues specifically susceptible to primary FMDV infection included the paraepiglottic- and palatine tonsils, as well as the nasopharyngeal mucosa. Additionally, experimental aerosol inoculation of sheep led to substantial virus replication in the lungs at 24–48 hours post-inoculation. During persistent infection (35 days post infection), the paraepiglottic- and palatine tonsils were the only tissues from which infectious FMDV was recovered. This is strikingly different from cattle, in which persistent FMDV infection has consistently been located to the nasopharyngeal mucosa. Analysis of tissue sections by immunomicroscopy revealed a strict epithelial tropism during both early and late phases of infection as FMDV was consistently localized to cytokeratin-expressing epithelial cells. This study expands upon previous knowledge of FMDV pathogenesis in sheep by providing detailed information on the temporo-anatomic distribution of FMDV in ovine tissues. Findings are discussed in relation to similar investigations previously performed in cattle and pigs, highlighting similarities and differences in FMDV pathogenesis across natural host species.
Klíčová slova:
Vaccines – Cattle – Livestock – Swine – Sheep – Viral persistence and latency – Tonsils – Foot and mouth disease
Zdroje
1. Knight-Jones TJ, Rushton J. The economic impacts of foot and mouth disease—what are they, how big are they and where do they occur? Prev Vet Med. 2013;112(3–4):161–73. doi: 10.1016/j.prevetmed.2013.07.013 23958457; PubMed Central PMCID: PMC3989032.
2. Arzt J, Baxt B, Grubman MJ, Jackson T, Juleff N, Rhyan J, et al. The pathogenesis of foot-and-mouth disease II: viral pathways in swine, small ruminants, and wildlife; myotropism, chronic syndromes, and molecular virus-host interactions. Transbound Emerg Dis. 2011;58(4):305–26. Epub 2011/06/16. doi: 10.1111/j.1865-1682.2011.01236.x 21672184.
3. Alexandersen S, Mowat N. Foot-and-mouth disease: host range and pathogenesis. Curr Top Microbiol Immunol. 2005;288:9–42. doi: 10.1007/3-540-27109-0_2 15648173.
4. Kitching RP, Hughes GJ. Clinical variation in foot and mouth disease: sheep and goats. Rev Sci Tech. 2002;21(3):505–12. doi: 10.20506/rst.21.3.1342 12523691.
5. Stenfeldt C, Pacheco JM, Singanallur NB, Ferreira HC, Vosloo W, Rodriguez LL, et al. Clinical and virological dynamics of a serotype O 2010 South East Asia lineage foot-and-mouth disease virus in sheep using natural and simulated natural inoculation and exposure systems. Vet Microbiol. 2015;178(1–2):50–60. doi: 10.1016/j.vetmic.2015.04.004 25937316.
6. Horsington J, Nfon C, Gonzales JL, Singanallur N, Bittner H, Vosloo W. Protection in sheep against heterologous challenge with serotype Asia-1 foot-and-mouth disease virus using high potency vaccine. Vaccine. 2018;36(41):6095–102. doi: 10.1016/j.vaccine.2018.08.073 30195485.
7. Gulbahar MY, Davis WC, Guvenc T, Yarim M, Parlak U, Kabak YB. Myocarditis associated with foot-and-mouth disease virus type O in lambs. Vet Pathol. 2007;44(5):589–99. doi: 10.1354/vp.44-5-589 17846231.
8. Ryan E, Horsington J, Durand S, Brooks H, Alexandersen S, Brownlie J, et al. Foot-and-mouth disease virus infection in young lambs: pathogenesis and tissue tropism. Vet Microbiol. 2008;127(3–4):258–74. Epub 2007/10/19. doi: 10.1016/j.vetmic.2007.08.029 17942248.
9. Littlejohn AI. Foot-and-mouth disease in sheep. State Veterinary Journal. 1970;25:97–115.
10. Ryan E, Zhang Z, Brooks HW, Horsington J, Brownlie J. Foot-and-mouth disease virus crosses the placenta and causes death in fetal lambs. J Comp Pathol. 2007;136(4):256–65. Epub 2007/04/27. doi: 10.1016/j.jcpa.2007.03.001 17459409.
11. Ryan E, Horsington J, Brownlie J, Zhang Z. Foot-and-mouth disease virus infection in fetal lambs: tissue tropism and cytokine response. J Comp Pathol. 2008;138(2–3):108–20. Epub 2008/02/26. doi: 10.1016/j.jcpa.2007.12.001 18295784.
12. Mansley LM, Dunlop PJ, Whiteside SM, Smith RG. Early dissemination of foot-and-mouth disease virus through sheep marketing in February 2001. Vet Rec. 2003;153(2):43–50. doi: 10.1136/vr.153.2.43 12885212.
13. Balinda SN, Tjornehoj K, Muwanika VB, Sangula AK, Mwiine FN, Ayebazibwe C, et al. Prevalence estimates of antibodies towards foot-and-mouth disease virus in small ruminants in Uganda. Transbound Emerg Dis. 2009;56(9–10):362–71. doi: 10.1111/j.1865-1682.2009.01094.x 19909475.
14. Anderson EC, Doughty WJ, Anderson J. The role of sheep and goats in the epizootiology of foot-and-mouth disease in Kenya. J Hyg (Lond). 1976;76(3):395–402. doi: 10.1017/s0022172400055315 180176; PubMed Central PMCID: PMC2129660.
15. Bravo DERC, Dekker A, Eble PL, MC DEJ. Vaccination of cattle only is sufficient to stop FMDV transmission in mixed populations of sheep and cattle. Epidemiol Infect. 2015;143(11):2279–86. doi: 10.1017/S0950268814003033 25464822.
16. Burrows R. The persistence of foot-and mouth disease virus in sheep. Journal of Hygiene. 1968;66(4):633–40. Epub 1968/12/01. doi: 10.1017/s0022172400028369 4303955.
17. Salt JS. The carrier state in foot and mouth disease—an immunological review. Br Vet J. 1993;149(3):207–23. doi: 10.1016/S0007-1935(05)80168-X 8392891.
18. Condy JB, Hedger RS, Hamblin C, Barnett IT. The duration of the foot-and-mouth disease virus carrier state in African buffalo (i) in the individual animal and (ii) in a free-living herd. Comp Immunol Microbiol Infect Dis. 1985;8(3–4):259–65. Epub 1985/01/01. doi: 10.1016/0147-9571(85)90004-9 3004803.
19. Hayer SS, Ranjan R, Biswal JK, Subramaniam S, Mohapatra JK, Sharma GK, et al. Quantitative characteristics of the foot-and-mouth disease carrier state under natural conditions in India. Transbound Emerg Dis. 2018;65(1):253–60. Epub 2017/03/03. doi: 10.1111/tbed.12627 28251837.
20. Bertram MR, Vu LT, Pauszek SJ, Brito BP, Hartwig EJ, Smoliga GR, et al. Lack of Transmission of Foot-and-Mouth Disease Virus From Persistently Infected Cattle to Naive Cattle Under Field Conditions in Vietnam. Front Vet Sci. 2018;5:174. doi: 10.3389/fvets.2018.00174 30101147; PubMed Central PMCID: PMC6072850.
21. Zhang ZD, Kitching RP. The localization of persistent foot and mouth disease virus in the epithelial cells of the soft palate and pharynx. J Comp Pathol. 2001;124(2–3):89–94. doi: 10.1053/jcpa.2000.0431 11222004.
22. Pacheco JM, Smoliga GR, O'Donnell V, Brito BP, Stenfeldt C, Rodriguez LL, et al. Persistent foot-and-mouth disease virus infection in the nasopharynx of cattle; tissue-specific distribution and local cytokine expression. PLoS One. 2015;10(5):e0125698. doi: 10.1371/journal.pone.0125698 25996935.
23. Stenfeldt C, Eschbaumer M, Rekant SI, Pacheco JM, Smoliga GR, Hartwig EJ, et al. The foot-and-mouth disease carrier state divergence in cattle. J Virol. 2016;90(14):6344–64. doi: 10.1128/JVI.00388-16 27147736; PubMed Central PMCID: PMC4936139.
24. Burrows R. Studies on the carrier state of cattle exposed to foot-and-mouth disease virus. Journal of Hygiene. 1966;64(1):81–90. Epub 1966/03/01. doi: 10.1017/s0022172400040365 5219023.
25. Horsington J, Zhang Z. Analysis of foot-and-mouth disease virus replication using strand-specific quantitative RT-PCR. J Virol Methods. 2007;144(1–2):149–55. Epub 2007/06/15. doi: 10.1016/j.jviromet.2007.05.002 17561277.
26. Arzt J, Pacheco JM, Rodriguez LL. The early pathogenesis of foot-and-mouth disease in cattle after aerosol inoculation: identification of the nasopharynx as the primary site of infection. Vet Pathol. 2010;47(6):1048–63. Epub 2010/07/01. doi: 10.1177/0300985810372509 20587691.
27. Stenfeldt C, Eschbaumer M, Pacheco JM, Rekant SI, Rodriguez LL, Arzt J. Pathogenesis of primary foot-and-mouth disease virus infection in the nasopharynx of vaccinated and non-vaccinated cattle. PLoS One. 2015;10(11):e0143666. doi: 10.1371/journal.pone.0143666 26599543; PubMed Central PMCID: PMC4658095.
28. Pacheco JM, Arzt J, Rodriguez LL. Early events in the pathogenesis of foot-and-mouth disease in cattle after controlled aerosol exposure. Veterinary journal (London, England: 1997). 2010;183(1):46–53. doi: 10.1016/j.tvjl.2008.08.023 18930417.
29. Stenfeldt C, Pacheco JM, Rodriguez LL, Arzt J. Infection dynamics of foot-and-mouth disease virus in pigs using two novel simulated-natural inoculation methods. Res Vet Sci. 2014;96(2):396–405. doi: 10.1016/j.rvsc.2014.01.009 24548596.
30. Fukai K, Yamada M, Morioka K, Ohashi S, Yoshida K, Kitano R, et al. Dose-dependent responses of pigs infected with foot-and-mouth disease virus O/JPN/2010 by the intranasal and intraoral routes. Arch Virol. 2015;160(1):129–39. doi: 10.1007/s00705-014-2239-4 25281431.
31. Stenfeldt C, Pacheco JM, Rodriguez LL, Arzt J. Early events in the pathogenesis of foot-and-mouth disease in pigs; identification of oropharyngeal tonsils as sites of primary and sustained viral replication. PLoS One. 2014;9(9):e106859. doi: 10.1371/journal.pone.0106859 25184288; PubMed Central PMCID: PMC4153717.
32. Stenfeldt C, Hartwig EJ, Smoliga GR, Palinski R, Silva EB, Bertram MR, et al. Contact Challenge of Cattle with Foot-and-Mouth Disease Virus Validates the Role of the Nasopharyngeal Epithelium as the Site of Primary and Persistent Infection. mSphere. 2018;3(6). Epub 2018/12/14. doi: 10.1128/mSphere.00493-18 30541776; PubMed Central PMCID: PMC6291620.
33. Gibson CF, Donaldson AI. Exposure of sheep to natural aerosols of foot-and-mouth disease virus. Res Vet Sci. 1986;41(1):45–9. Epub 1986/07/01. 3020658.
34. Sellers R, Gloster J. Foot-and-mouth disease: a review of intranasal infection of cattle, sheep and pigs. Veterinary journal (London, England: 1997). 2008;177(2):159–68. doi: 10.1016/j.tvjl.2007.03.009 17509917.
35. Hughes GJ, Kitching RP, Woolhouse ME. Dose-dependent responses of sheep inoculated intranasally with a type O foot-and-mouth disease virus. J Comp Pathol. 2002;127(1):22–9. doi: 10.1053/jcpa.2002.0560 12354542.
36. Singanallur NB, Pacheco JM, Arzt J, Stenfeldt C, Fosgate GT, Rodriguez L, et al. Efficacy of a high potency O1 Manisa monovalent vaccine against heterologous challenge with foot-and-mouth disease virus of O/SEA/Mya-98 lineage in sheep. Antiviral Res. 2017;145:114–22. doi: 10.1016/j.antiviral.2017.07.020 28780422.
37. Yoon H, Yoon SS, Kim YJ, Moon OK, Wee SH, Joo YS, et al. Epidemiology of the foot-and-mouth disease serotype O epidemic of November 2010 to April 2011 in the Republic of Korea. Transbound Emerg Dis. 2013;62(3):252–63. Epub 2013/06/05. doi: 10.1111/tbed.12109 23731597.
38. Pacheco JM, Lee KN, Eschbaumer M, Bishop EA, Hartwig EJ, Pauszek SJ, et al. Evaluation of Infectivity, Virulence and Transmission of FDMV Field Strains of Serotypes O and A Isolated In 2010 from Outbreaks in the Republic of Korea. PLoS One. 2016;11(1):e0146445. Epub 2016/01/07. doi: 10.1371/journal.pone.0146445 26735130; PubMed Central PMCID: PMC4703371.
39. Brown F, Cartwright B. Purification of the virus of foot-and-mouth disease by fluorocarbon treatment and its dissociation from neutralizing antibody. Journal of Immunology. 1960;85(3):309–13. WOS:A1960WA81800013.
40. Callahan JD, Brown F, Osorio FA, Sur JH, Kramer E, Long GW, et al. Use of a portable real-time reverse transcriptase-polymerase chain reaction assay for rapid detection of foot-and-mouth disease virus. Journal of the American Veterinary Medical Association. 2002;220(11):1636–42. doi: 10.2460/javma.2002.220.1636 12051502.
41. Rasmussen TB, Uttenthal A, de Stricker K, Belak S, Storgaard T. Development of a novel quantitative real-time RT-PCR assay for the simultaneous detection of all serotypes of foot-and-mouth disease virus. Arch Virol. 2003;148(10):2005–21. doi: 10.1007/s00705-003-0145-2 14551821.
42. Stenfeldt C, Pacheco JM, Smoliga GR, Bishop E, Pauszek SJ, Hartwig EJ, et al. Detection of Foot-and-mouth Disease Virus RNA and Capsid Protein in Lymphoid Tissues of Convalescent Pigs Does Not Indicate Existence of a Carrier State. Transbound Emerg Dis. 2016;63(2):152–64. Epub 2014/06/20. doi: 10.1111/tbed.12235 24943477.
43. Swaney LM. A continuous bovine kidney cell line for routine assays of foot-and-mouth disease virus. Vet Microbiol. 1988;18(1):1–14. doi: 10.1016/0378-1135(88)90111-3 2847400.
44. LaRocco M, Krug PW, Kramer E, Ahmed Z, Pacheco JM, Duque H, et al. A continuous bovine kidney cell line constitutively expressing bovine alphavbeta6 integrin has increased susceptibility to foot-and-mouth disease virus. Journal of clinical microbiology. 2013;51(6):1714–20. doi: 10.1128/JCM.03370-12 23515553; PubMed Central PMCID: PMC3716081.
45. LaRocco M, Krug PW, Kramer E, Ahmed Z, Pacheco JM, Duque H, et al. Correction for LaRocco et al., A Continuous Bovine Kidney Cell Line Constitutively Expressing Bovine alphaVbeta6 Integrin Has Increased Susceptibility to Foot-and-Mouth Disease Virus. Journal of clinical microbiology. 2015;53(2):755. doi: 10.1128/JCM.03220-14 25617444; PubMed Central PMCID: PMC4298512.
46. Arzt J, Gregg DA, Clavijo A, Rodriguez LL. Optimization of immunohistochemical and fluorescent antibody techniques for localization of Foot-and-mouth disease virus in animal tissues. J Vet Diagn Invest. 2009;21(6):779–92. Epub 2009/11/11. doi: 10.1177/104063870902100604 19901278.
47. Yang M, Clavijo A, Suarez-Banmann R, Avalo R. Production and characterization of two serotype independent monoclonal antibodies against foot-and-mouth disease virus. Vet Immunol Immunopathol. 2007;115(1–2):126–34. doi: 10.1016/j.vetimm.2006.10.002 17109972.
48. Yang M, Clavijo A, Li M, Hole K, Holland H, Wang H, et al. Identification of a major antibody binding epitope in the non-structural protein 3D of foot-and-mouth disease virus in cattle and the development of a monoclonal antibody with diagnostic applications. J Immunol Methods. 2007;321(1–2):174–81. doi: 10.1016/j.jim.2007.01.016 17320098.
49. Gibbens JC, Sharpe CE, Wilesmith JW, Mansley LM, Michalopoulou E, Ryan JB, et al. Descriptive epidemiology of the 2001 foot-and-mouth disease epidemic in Great Britain: the first five months. Vet Rec. 2001;149(24):729–43. 11808655.
50. Aggarwal N, Zhang Z, Cox S, Statham R, Alexandersen S, Kitching RP, et al. Experimental studies with foot-and-mouth disease virus, strain O, responsible for the 2001 epidemic in the United Kingdom. Vaccine. 2002;20(19–20):2508–15. doi: 10.1016/s0264-410x(02)00178-0 12057606.
51. Hughes GJ, Mioulet V, Kitching RP, Woolhouse ME, Alexandersen S, Donaldson AI. Foot-and-mouth disease virus infection of sheep: implications for diagnosis and control. Vet Rec. 2002;150(23):724–7. doi: 10.1136/vr.150.23.724 12081308.
52. Orsel K, Bouma A, Dekker A, Stegeman JA, de Jong MC. Foot and mouth disease virus transmission during the incubation period of the disease in piglets, lambs, calves, and dairy cows. Prev Vet Med. 2009;88(2):158–63. doi: 10.1016/j.prevetmed.2008.09.001 18929417.
53. Horsington J, Zhang Z, Bittner H, Hole K, Singanallur NB, Alexandersen S, et al. Early protection in sheep against intratypic heterologous challenge with serotype O foot-and-mouth disease virus using high-potency, emergency vaccine. Vaccine. 2015;33(3):422–9. doi: 10.1016/j.vaccine.2014.11.043 25483241.
54. Stenfeldt C, Arzt J, Pacheco JM, Gladue DP, Smoliga GR, Silva EB, et al. A partial deletion within foot-and-mouth disease virus non-structural protein 3A causes clinical attenuation in cattle but does not prevent subclinical infection. Virology. 2018;516:115–26. Epub 2018/01/19. doi: 10.1016/j.virol.2018.01.008 29346074.
55. Cocquyt G, Baten T, Simoens P, Van Den Broeck W. Anatomical localisation and histology of the ovine tonsils. Vet Immunol Immunopathol. 2005;107(1–2):79–86. doi: 10.1016/j.vetimm.2005.03.012 15885802.
56. Casteleyn C, Breugelmans S, Simoens P, Van den Broeck W. The tonsils revisited: review of the anatomical localization and histological characteristics of the tonsils of domestic and laboratory animals. Clin Dev Immunol. 2011;2011:472460. doi: 10.1155/2011/472460 21869895; PubMed Central PMCID: PMC3159307.
57. Alexandersen S, Oleksiewicz MB, Donaldson AI. The early pathogenesis of foot-and-mouth disease in pigs infected by contact: a quantitative time-course study using TaqMan RT-PCR. J Gen Virol. 2001;82(Pt 4):747–55. doi: 10.1099/0022-1317-82-4-747 11257178.
58. Arzt J, Pacheco JM, Stenfeldt C, Rodriguez LL. Pathogenesis of virulent and attenuated foot-and-mouth disease virus in cattle. Virol J. 2017;14(1):89. doi: 10.1186/s12985-017-0758-9 28464897; PubMed Central PMCID: PMC5414290.
59. Maree F, de Klerk-Lorist LM, Gubbins S, Zhang F, Seago J, Perez-Martin E, et al. Differential Persistence of Foot-and-Mouth Disease Virus in African Buffalo Is Related to Virus Virulence. J Virol. 2016;90(10):5132–40. doi: 10.1128/JVI.00166-16 26962214.
60. Barnett PV, Keel P, Reid S, Armstrong RM, Statham RJ, Voyce C, et al. Evidence that high potency foot-and-mouth disease vaccine inhibits local virus replication and prevents the "carrier" state in sheep. Vaccine. 2004;22(9–10):1221–32. doi: 10.1016/j.vaccine.2003.09.024 15003651.
61. Madhanmohan M, Nagendrakumar SB, Kumar R, Anilkumar J, Manikumar K, Yuvaraj S, et al. Clinical protection, sub-clinical infection and persistence following vaccination with extinction payloads of O1 Manisa Foot-and-Mouth Disease monovalent vaccine and challenge in goats and comparison with sheep. Res Vet Sci. 2012;93(2):1050–9. doi: 10.1016/j.rvsc.2011.10.006 22079173.
62. Cox SJ, Voyce C, Parida S, Reid SM, Hamblin PA, Hutchings G, et al. Effect of emergency FMD vaccine antigen payload on protection, sub-clinical infection and persistence following direct contact challenge of cattle. Vaccine. 2006;24(16):3184–90. Epub 2006/02/21. doi: 10.1016/j.vaccine.2006.01.037 16488060.
63. Cox SJ, Voyce C, Parida S, Reid SM, Hamblin PA, Paton DJ, et al. Protection against direct-contact challenge following emergency FMD vaccination of cattle and the effect on virus excretion from the oropharynx. Vaccine. 2005;23(9):1106–13. Epub 2005/01/05. doi: 10.1016/j.vaccine.2004.08.034 15629353.
64. Stenfeldt C, Eschbaumer M, Smoliga GR, Rodriguez LL, Zhu J, Arzt J. Clearance of a persistent picornavirus infection is associated with enhanced pro-apoptotic and cellular immune responses. Sci Rep. 2017;7(1):17800. doi: 10.1038/s41598-017-18112-4 29259271; PubMed Central PMCID: PMC5736604.
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Masturbační chování žen v ČR − dotazníková studie
- Nejasný stín na plicích – kazuistika
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Somatizace stresu – typické projevy a možnosti řešení
Najčítanejšie v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts