Impaired cardiac performance, protein synthesis, and mitochondrial function in tumor-bearing mice
Autoři:
Taylor E. Berent aff001; Jessica M. Dorschner aff001; Thomas Meyer aff001; Theodore A. Craig aff001; Xuewei Wang aff002; Hawley Kunz aff003; Aminah Jatoi aff004; Ian R. Lanza aff003; Horng Chen aff005; Rajiv Kumar aff001
Působiště autorů:
Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United states of America
aff001; Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
aff002; Division of Endocrinology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
aff003; Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
aff004; Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
aff005; Department of Biochemistry and Molecular Biology; Mayo Clinic, Rochester, Minnesota, United States of America
aff006
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0226440
Souhrn
Background
To understand the underlying mechanisms of cardiac dysfunction in cancer, we examined cardiac function, protein synthesis, mitochondrial function and gene expression in a model of heart failure in mice injected with Lewis lung carcinoma (LLC1) cells.
Experimental design
Seven week-old C57BL/J6 male and female mice were injected with LLC1 cells or vehicle. Cardiac ejection fraction, ventricular wall and septal thickness were reduced in male, but not female, tumor-bearing mice compared to vehicle-injected control mice. Cardiac protein synthesis was reduced in tumor-bearing male mice compared to control mice (p = 0.025). Aspect ratio and form factor of cardiac mitochondria from the tumor-bearing mice were increased compared control mice (p = 0.042 and p = 0.0032, respectively) indicating a more fused mitochondrial network in the hearts of tumor-bearing mice. In cultured cardiomyocytes maximal oxygen consumption and mitochondrial reserve capacity were reduced in cells exposed to tumor cell-conditioned medium compared to non-conditioned medium (p = 0.0059, p = 0.0010). Whole transcriptome sequencing of cardiac ventricular muscle from tumor-bearing vs. control mice showed altered expression of 1648 RNA transcripts with a false discovery rate of less than 0.05. Of these, 54 RNA transcripts were reduced ≤ 0.5 fold, and 3 RNA transcripts were increased by ≥1.5-fold in tumor-bearing mouse heart compared to control. Notably, the expression of mRNAs for apelin (Apln), the apelin receptor (Aplnr), the N-myc proto-oncogene, early growth protein (Egr1), and the transcription factor Sox9 were reduced by >50%, whereas the mRNA for growth arrest and DNA-damage-inducible, beta (Gadd45b) is increased >2-fold, in ventricular tissue from tumor-bearing mice compared to control mice.
Conclusions
Lung tumor cells induce heart failure in male mice in association with reduced protein synthesis, mitochondrial function, and the expression of the mRNAs for inotropic and growth factors. These data provide new mechanistic insights into cancer-associated heart failure that may help unlock treatment options for this condition.
Klíčová slova:
Messenger RNA – Mouse models – Mitochondria – Cardiovascular physiology – Protein synthesis – Oxygen consumption
Zdroje
1. Barkhudaryan A, Scherbakov N, Springer J, Doehner W. Cardiac muscle wasting in individuals with cancer cachexia. ESC Heart Fail. 2017;4(4):458–67. doi: 10.1002/ehf2.12184 29154433.
2. Cramer L, Hildebrandt B, Kung T, Wichmann K, Springer J, Doehner W, et al. Cardiovascular function and predictors of exercise capacity in patients with colorectal cancer. J Am Coll Cardiol. 2014;64(13):1310–9. doi: 10.1016/j.jacc.2014.07.948 25257631.
3. Antunes JMM, Ferreira RMP, Moreira-Goncalves D. Exercise Training as Therapy for Cancer-Induced Cardiac Cachexia. Trends Mol Med. 2018;24(8):709–27. Epub 2018/07/08. doi: 10.1016/j.molmed.2018.06.002 29980479.
4. Burch GE, Phillips JH, Ansari A. The cachetic heart. A clinico-pathologic, electrocardiographic and roentgenographic entity. Dis Chest. 1968;54(5):403–9. doi: 10.1378/chest.54.5.403 5698585.
5. Ameri P, Canepa M, Anker MS, Belenkov Y, Bergler-Klein J, Cohen-Solal A, et al. Cancer diagnosis in patients with heart failure: epidemiology, clinical implications and gaps in knowledge. Eur J Heart Fail. 2018;20(5):879–87. Epub 2018/02/22. doi: 10.1002/ejhf.1165 29464808.
6. Schunemann M, Anker SD, Rauchhaus M. Cancer fatigue syndrome reflects clinically non-overt heart failure: an approach towards onco-cardiology. Nat Clin Pract Oncol. 2008;5(11):632–3. doi: 10.1038/ncponc1226 18813228.
7. Belloum Y, Rannou-Bekono F, Favier FB. Cancer-induced cardiac cachexia: Pathogenesis and impact of physical activity (Review). Oncol Rep. 2017;37(5):2543–52. doi: 10.3892/or.2017.5542 28393216.
8. Baracos V, Kazemi-Bajestani SM. Clinical outcomes related to muscle mass in humans with cancer and catabolic illnesses. Int J Biochem Cell Biol. 2013;45(10):2302–8. Epub 2013/07/04. doi: 10.1016/j.biocel.2013.06.016 23819995.
9. Lena A, Coats AJS, Anker MS. Metabolic disorders in heart failure and cancer. ESC Heart Fail. 2018;5(6):1092–8. Epub 2018/12/21. doi: 10.1002/ehf2.12389 30570226; PubMed Central PMCID: PMC6300808.
10. Pavo N, Raderer M, Hulsmann M, Neuhold S, Adlbrecht C, Strunk G, et al. Cardiovascular biomarkers in patients with cancer and their association with all-cause mortality. Heart. 2015;101(23):1874–80. Epub 2015/09/30. doi: 10.1136/heartjnl-2015-307848 26416836.
11. Di Lisi D, Bonura F, Macaione F, Peritore A, Meschisi M, Cuttitta F, et al. Chemotherapy-induced cardiotoxicity: role of the tissue Doppler in the early diagnosis of left ventricular dysfunction. Anticancer Drugs. 2011;22(5):468–72. doi: 10.1097/CAD.0b013e3283443704 21301318.
12. Albini A, Pennesi G, Donatelli F, Cammarota R, De Flora S, Noonan DM. Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst. 2010;102(1):14–25. doi: 10.1093/jnci/djp440 20007921; PubMed Central PMCID: PMC2802286.
13. Springer J, Tschirner A, Haghikia A, von Haehling S, Lal H, Grzesiak A, et al. Prevention of liver cancer cachexia-induced cardiac wasting and heart failure. Eur Heart J. 2014;35(14):932–41. doi: 10.1093/eurheartj/eht302 23990596; PubMed Central PMCID: PMC3977133.
14. Costelli P, De Tullio R, Baccino FM, Melloni E. Activation of Ca(2+)-dependent proteolysis in skeletal muscle and heart in cancer cachexia. Br J Cancer. 2001;84(7):946–50. doi: 10.1054/bjoc.2001.1696 11286475; PubMed Central PMCID: PMC2363832.
15. Marin-Corral J, Fontes CC, Pascual-Guardia S, Sanchez F, Olivan M, Argiles JM, et al. Redox balance and carbonylated proteins in limb and heart muscles of cachectic rats. Antioxid Redox Signal. 2010;12(3):365–80. Epub 2009/09/10. doi: 10.1089/ars.2009.2818 19737087.
16. Borges FH, Marinello PC, Cecchini AL, Blegniski FP, Guarnier FA, Cecchini R. Oxidative and proteolytic profiles of the right and left heart in a model of cancer-induced cardiac cachexia. Pathophysiology. 2014;21(4):257–65. Epub 2014/07/06. doi: 10.1016/j.pathophys.2014.05.003 24996969.
17. Tian M, Asp ML, Nishijima Y, Belury MA. Evidence for cardiac atrophic remodeling in cancer-induced cachexia in mice. Int J Oncol. 2011;39(5):1321–6. doi: 10.3892/ijo.2011.1150 21822537.
18. Tian M, Nishijima Y, Asp ML, Stout MB, Reiser PJ, Belury MA. Cardiac alterations in cancer-induced cachexia in mice. Int J Oncol. 2010;37(2):347–53. doi: 10.3892/ijo_00000683 20596662.
19. Xu H, Crawford D, Hutchinson KR, Youtz DJ, Lucchesi PA, Velten M, et al. Myocardial dysfunction in an animal model of cancer cachexia. Life Sci. 2011;88(9–10):406–10. doi: 10.1016/j.lfs.2010.12.010 21167183; PubMed Central PMCID: PMC3057126.
20. Cosper PF, Leinwand LA. Cancer causes cardiac atrophy and autophagy in a sexually dimorphic manner. Cancer Res. 2011;71(5):1710–20. doi: 10.1158/0008-5472.CAN-10-3145 21163868; PubMed Central PMCID: PMC3049989.
21. Shadfar S, Couch ME, McKinney KA, Weinstein LJ, Yin X, Rodriguez JE, et al. Oral resveratrol therapy inhibits cancer-induced skeletal muscle and cardiac atrophy in vivo. Nutr Cancer. 2011;63(5):749–62. doi: 10.1080/01635581.2011.563032 21660860; PubMed Central PMCID: PMC3623008.
22. Patel JB, Valencik ML, Pritchett AM, Burnett JC Jr., McDonald JA, Redfield MM. Cardiac-specific attenuation of natriuretic peptide A receptor activity accentuates adverse cardiac remodeling and mortality in response to pressure overload. Am J Physiol Heart Circ Physiol. 2005;289(2):H777–84. doi: 10.1152/ajpheart.00117.2005 15778276.
23. Hart CY, Burnett JC Jr., Redfield MM. Effects of avertin versus xylazine-ketamine anesthesia on cardiac function in normal mice. Am J Physiol Heart Circ Physiol. 2001;281(5):H1938–45. Epub 2001/10/23. doi: 10.1152/ajpheart.2001.281.5.H1938 11668054.
24. Jaleel A, Short KR, Asmann YW, Klaus KA, Morse DM, Ford GC, et al. In vivo measurement of synthesis rate of individual skeletal muscle mitochondrial proteins. Am J Physiol Endocrinol Metab. 2008;295(5):E1255–68. Epub 2008/09/04. doi: 10.1152/ajpendo.90586.2008 18765679; PubMed Central PMCID: PMC2584812.
25. Lanza IR, Zabielski P, Klaus KA, Morse DM, Heppelmann CJ, Bergen HR 3rd, et al. Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis. Cell Metab. 2012;16(6):777–88. Epub 2012/12/12. doi: 10.1016/j.cmet.2012.11.003 23217257; PubMed Central PMCID: PMC3544078.
26. Waterlow JC, Golden J, Picou D. The measurements of rates of protein turnover, synthesis, and breakdown in man and the effects of nutritional status and surgical injury. Am J Clin Nutr. 1977;30(8):1333–9. Epub 1977/08/01. doi: 10.1093/ajcn/30.8.1333 407787.
27. Craig TA, Zhang Y, McNulty MS, Middha S, Ketha H, Singh RJ, et al. Research resource: whole transcriptome RNA sequencing detects multiple 1alpha,25-dihydroxyvitamin D(3)-sensitive metabolic pathways in developing zebrafish. Molecular endocrinology. 2012;26(9):1630–42. Epub 2012/06/27. doi: 10.1210/me.2012-1113 22734042; PubMed Central PMCID: PMC3434529.
28. Ryan ZC, Craig TA, Folmes CD, Wang X, Lanza IR, Schaible NS, et al. 1alpha,25-Dihydroxyvitamin D3 Regulates Mitochondrial Oxygen Consumption and Dynamics in Human Skeletal Muscle Cells. The Journal of biological chemistry. 2016;291(3):1514–28. Epub 2015/11/26. doi: 10.1074/jbc.M115.684399 26601949; PubMed Central PMCID: PMC4714233.
29. Pham AH, Chan DC. Analyzing mitochondrial dynamics in mouse organotypic slice cultures. Methods Enzymol. 2014;547:111–29. doi: 10.1016/B978-0-12-801415-8.00007-2 25416355.
30. Bearer EL. Overview of image analysis, image importing, and image processing using freeware. Curr Protoc Mol Biol. 2003;Chapter 14:Unit 14 5. Epub 2008/02/12. doi: 10.1002/0471142727.mb1415s63 18265322; PubMed Central PMCID: PMC3376083.
31. Folmes CD, Arrell DK, Zlatkovic-Lindor J, Martinez-Fernandez A, Perez-Terzic C, Nelson TJ, et al. Metabolome and metaboproteome remodeling in nuclear reprogramming. Cell Cycle. 2013;12(15):2355–65. doi: 10.4161/cc.25509 23839047; PubMed Central PMCID: PMC3841314.
32. Olson RE, Piatnek DA. Conservation of energy in cardiac muscle. Ann N Y Acad Sci. 1959;72(12):466–79. Epub 1959/02/06. doi: 10.1111/j.1749-6632.1959.tb44175.x 13627932.
33. Manne ND, Lima M, Enos RT, Wehner P, Carson JA, Blough E. Altered cardiac muscle mTOR regulation during the progression of cancer cachexia in the ApcMin/+ mouse. Int J Oncol. 2013;42(6):2134–40. doi: 10.3892/ijo.2013.1893 23589074; PubMed Central PMCID: PMC3699594.
34. Musolino V, Palus S, Tschirner A, Drescher C, Gliozzi M, Carresi C, et al. Megestrol acetate improves cardiac function in a model of cancer cachexia-induced cardiomyopathy by autophagic modulation. J Cachexia Sarcopenia Muscle. 2016;7(5):555–66. doi: 10.1002/jcsm.12116 27239419; PubMed Central PMCID: PMC4864048.
35. Stewart B, Wild CP. World Cancer Report, 2014: World Health Organization, International Agency for Research on Cancer, WHO. (2014); 2014.
36. Evans WJ, Morley JE, Argiles J, Bales C, Baracos V, Guttridge D, et al. Cachexia: a new definition. Clin Nutr. 2008;27(6):793–9. doi: 10.1016/j.clnu.2008.06.013 18718696.
37. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5):489–95. doi: 10.1016/S1470-2045(10)70218-7 21296615.
38. Wigmore SJ, Plester CE, Richardson RA, Fearon KC. Changes in nutritional status associated with unresectable pancreatic cancer. Br J Cancer. 1997;75(1):106–9. doi: 10.1038/bjc.1997.17 9000606; PubMed Central PMCID: PMC2222706.
39. Prado CM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008;9(7):629–35. doi: 10.1016/S1470-2045(08)70153-0 18539529.
40. Prado CM, Baracos VE, McCargar LJ, Reiman T, Mourtzakis M, Tonkin K, et al. Sarcopenia as a determinant of chemotherapy toxicity and time to tumor progression in metastatic breast cancer patients receiving capecitabine treatment. Clin Cancer Res. 2009;15(8):2920–6. doi: 10.1158/1078-0432.CCR-08-2242 19351764.
41. Antoun S, Baracos VE, Birdsell L, Escudier B, Sawyer MB. Low body mass index and sarcopenia associated with dose-limiting toxicity of sorafenib in patients with renal cell carcinoma. Ann Oncol. 2010;21(8):1594–8. doi: 10.1093/annonc/mdp605 20089558.
42. Catalano MG, Fortunati N, Arena K, Costelli P, Aragno M, Danni O, et al. Selective up-regulation of tumor necrosis factor receptor I in tumor-bearing rats with cancer-related cachexia. Int J Oncol. 2003;23(2):429–36. 12851692.
43. Ebrahimi B, Tucker SL, Li D, Abbruzzese JL, Kurzrock R. Cytokines in pancreatic carcinoma: correlation with phenotypic characteristics and prognosis. Cancer. 2004;101(12):2727–36. doi: 10.1002/cncr.20672 15526319.
44. Costelli P, Muscaritoli M, Bonetto A, Penna F, Reffo P, Bossola M, et al. Muscle myostatin signalling is enhanced in experimental cancer cachexia. Eur J Clin Invest. 2008;38(7):531–8. doi: 10.1111/j.1365-2362.2008.01970.x 18578694.
45. Strassmann G, Fong M, Kenney JS, Jacob CO. Evidence for the involvement of interleukin 6 in experimental cancer cachexia. J Clin Invest. 1992;89(5):1681–4. doi: 10.1172/JCI115767 1569207; PubMed Central PMCID: PMC443047.
46. Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J. 2004;18(1):39–51. doi: 10.1096/fj.03-0610com 14718385.
47. Schersten T, Lundholm K. Lysosomal enzyme activity in muscle tissue from patients with malignant tumor. Cancer. 1972;30(5):1246–51. doi: 10.1002/1097-0142(197211)30:5<1246::aid-cncr2820300516>3.0.co;2-o 4263667.
48. McClung JM, Judge AR, Powers SK, Yan Z. p38 MAPK links oxidative stress to autophagy-related gene expression in cachectic muscle wasting. Am J Physiol Cell Physiol. 2010;298(3):C542–9. doi: 10.1152/ajpcell.00192.2009 19955483; PubMed Central PMCID: PMC2838571.
49. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98(1):115–24. doi: 10.1016/S0092-8674(00)80611-X 10412986.
50. Bayliss TJ, Smith JT, Schuster M, Dragnev KH, Rigas JR. A humanized anti-IL-6 antibody (ALD518) in non-small cell lung cancer. Expert Opin Biol Ther. 2011;11(12):1663–8. doi: 10.1517/14712598.2011.627850 21995322.
51. Cohen S, Nathan JA, Goldberg AL. Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov. 2015;14(1):58–74. doi: 10.1038/nrd4467 25549588.
52. Oka M, Yamamoto K, Takahashi M, Hakozaki M, Abe T, Iizuka N, et al. Relationship between serum levels of interleukin 6, various disease parameters and malnutrition in patients with esophageal squamous cell carcinoma. Cancer Res. 1996;56(12):2776–80. 8665513.
53. Benny Klimek ME, Aydogdu T, Link MJ, Pons M, Koniaris LG, Zimmers TA. Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia. Biochem Biophys Res Commun. 2010;391(3):1548–54. doi: 10.1016/j.bbrc.2009.12.123 20036643.
54. Kir S, Komaba H, Garcia AP, Economopoulos KP, Liu W, Lanske B, et al. PTH/PTHrP Receptor Mediates Cachexia in Models of Kidney Failure and Cancer. Cell Metab. 2016;23(2):315–23. doi: 10.1016/j.cmet.2015.11.003 26669699; PubMed Central PMCID: PMC4749423.
55. Mittal A, Bhatnagar S, Kumar A, Lach-Trifilieff E, Wauters S, Li H, et al. The TWEAK-Fn14 system is a critical regulator of denervation-induced skeletal muscle atrophy in mice. J Cell Biol. 2010;188(6):833–49. doi: 10.1083/jcb.200909117 20308426; PubMed Central PMCID: PMC2845082.
56. Zhang G, Liu Z, Ding H, Zhou Y, Doan HA, Sin KWT, et al. Tumor induces muscle wasting in mice through releasing extracellular Hsp70 and Hsp90. Nat Commun. 2017;8(1):589. doi: 10.1038/s41467-017-00726-x 28928431; PubMed Central PMCID: PMC5605540.
57. Argiles JM, Busquets S, Stemmler B, Lopez-Soriano FJ. Cancer cachexia: understanding the molecular basis. Nat Rev Cancer. 2014;14(11):754–62. doi: 10.1038/nrc3829 25291291.
58. Muhlfeld C, Das SK, Heinzel FR, Schmidt A, Post H, Schauer S, et al. Cancer induces cardiomyocyte remodeling and hypoinnervation in the left ventricle of the mouse heart. PLoS One. 2011;6(5):e20424. doi: 10.1371/journal.pone.0020424 21637823; PubMed Central PMCID: PMC3102720.
59. Heras G, Namuduri AV, Traini L, Shevchenko G, Falk A, Bergstrom Lind S, et al. Muscle RING-finger protein-1 (MuRF1) functions and cellular localization are regulated by SUMO1 post-translational modification. J Mol Cell Biol. 2018. Epub 2018/06/06. doi: 10.1093/jmcb/mjy036 29868881.
60. Sukari A, Muqbil I, Mohammad RM, Philip PA, Azmi AS. F-BOX proteins in cancer cachexia and muscle wasting: Emerging regulators and therapeutic opportunities. Semin Cancer Biol. 2016;36:95–104. Epub 2016/01/26. doi: 10.1016/j.semcancer.2016.01.002 26804424; PubMed Central PMCID: PMC4761518.
61. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294(5547):1704–8. Epub 2001/10/27. doi: 10.1126/science.1065874 11679633.
62. Johns N, Stephens NA, Fearon KC. Muscle wasting in cancer. Int J Biochem Cell Biol. 2013;45(10):2215–29. doi: 10.1016/j.biocel.2013.05.032 23770121.
63. Glass DJ. Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nat Cell Biol. 2003;5(2):87–90. Epub 2003/02/04. doi: 10.1038/ncb0203-87 12563267.
64. Meyer G, Czompa A, Reboul C, Csepanyi E, Czegledi A, Bak I, et al. The cellular autophagy markers Beclin-1 and LC3B-II are increased during reperfusion in fibrillated mouse hearts. Curr Pharm Des. 2013;19(39):6912–8. Epub 2013/04/18. doi: 10.2174/138161281939131127122510 23590156.
65. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999;402(6762):672–6. Epub 1999/12/22. doi: 10.1038/45257 10604474.
66. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest. 2003;112(12):1809–20. Epub 2003/11/26. doi: 10.1172/JCI20039 14638851; PubMed Central PMCID: PMC297002.
67. Chan DC. Mitochondria: dynamic organelles in disease, aging, and development. Cell. 2006;125(7):1241–52. doi: 10.1016/j.cell.2006.06.010 16814712.
68. Japp AG, Newby DE. The apelin-APJ system in heart failure: pathophysiologic relevance and therapeutic potential. Biochem Pharmacol. 2008;75(10):1882–92. Epub 2008/02/15. doi: 10.1016/j.bcp.2007.12.015 18272138
69. Barnes G, Japp AG, Newby DE. Translational promise of the apelin—APJ system. Heart. 2010;96(13):1011–6. Epub 2010/06/30. doi: 10.1136/hrt.2009.191122 20584856.
70. Bretones G, Delgado MD, Leon J. Myc and cell cycle control. Biochim Biophys Acta. 2015;1849(5):506–16. Epub 2014/04/08. doi: 10.1016/j.bbagrm.2014.03.013 24704206.
71. Khachigian LM. Early growth response-1 in the pathogenesis of cardiovascular disease. J Mol Med (Berl). 2016;94(7):747–53. Epub 2016/06/03. doi: 10.1007/s00109-016-1428-x 27251707.
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts