Choice-induced inter-trial inhibition is modulated by idiosyncratic choice-consistency
Autoři:
Christian Wolf aff001; Alexander C. Schütz aff001
Působiště autorů:
AG Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany
aff001; Allgemeine Psychologie, Westfälische Wilhelms-Universität, Münster, Germany
aff002
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0226982
Souhrn
Humans constantly decide among multiple action plans. Carrying out one action usually implies that other plans are suppressed. Here we make use of inter-trial effects to determine whether suppression of non-chosen action plans is due to proactively preparing for upcoming decisions or due to retroactive influences from previous decisions. Participants received rewards for timely and accurate saccades to targets appearing left or right from fixation. Each block interleaved trials with one (single-trial) or two targets (choice-trial). Whereas single-trial rewards were always identical, rewards for the two targets in choice-trials could either be identical (unbiased) or differ (biased) within one block. We analyzed single-trial latencies as a function of idiosyncratic choice-consistency or reward-bias, the previous trial type and whether the same or the other target was selected in the preceding trial. After choice-trials, single-trial responses to the previously non-chosen target were delayed. For biased choices, inter-trial effects were strongest when choices were followed by a single-trial to the non-chosen target. In the unbiased condition, inter-trial effects increased with increasing individual consistency of choice behavior. These findings suggest that the suppression of alternative action plans is not coupled to target selection and motor execution but instead depends on top-down signals like the overall preference of one target over another.
Klíčová slova:
Behavior – Electroencephalography – Vision – Attention – Decision making – Reaction time – Eye movements – Priming (psychology)
Zdroje
1. Awh E, Belopolsky AV, Theeuwes J. Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends Cogn Sci. 2012;16(8):437–43. 22795563
2. Failing MF, Theeuwes J. Selection history: How reward modulates selectivity of visual attention. Psychon Bull Rev. 2018;25:514–38. doi: 10.3758/s13423-017-1380-y 28986770
3. Le Pelley ME, Mitchell CJ, Beesley T, George DN, Wills AJ. Attention and associative learning in humans: An integrative review. Psychol Bull. 2016;142(10):1111–40. doi: 10.1037/bul0000064 27504933
4. Theeuwes J. Goal-driven, stimulus-driven, and history-driven selection. Curr Opin Psychol Sci. 2019;29:97–101.
5. Anderson BA. The attention habit: How reward learning shapes attentional selection. Ann N Y Acad Sci. 2016;1369(1):24–39. doi: 10.1111/nyas.12957 26595376
6. Anderson BA, Laurent PA, Yantis S. Value-driven attentional capture. Proc Natl Acad Sci. 2011;108(25):10367–71. doi: 10.1073/pnas.1104047108 21646524
7. Theeuwes J, Belopolsky AV. Reward grabs the eye: Oculomotor capture by rewarding stimuli. Vision Res. 2012;74:80–5. doi: 10.1016/j.visres.2012.07.024 22902641
8. Kadel H, Feldmann-Wüstefeld T, Schubö A. Selection history alters attentional filter settings persistently and beyond top-down control. Psychophysiology. 2017;54(5):736–54. doi: 10.1111/psyp.12830 28169422
9. Frings C, Schneider KK, Fox E. The negative priming paradigm: An update and implications for selective attention. Psychon Bull Rev. 2015;22(6):1577–97. doi: 10.3758/s13423-015-0841-4 25917144
10. Fecteau JH, Munoz DP. Exploring the consequences of the previous trial. Nat Rev Neurosci. 2003;4(6):435–43. doi: 10.1038/nrn1114 12778116
11. Kristjánsson Á, Campana G. Where perception meets memory: A review of repetition priming in visual search tasks. Atten Percept Psychophys. 2010;72(1):5–18. doi: 10.3758/APP.72.1.5 20045875
12. Kristjánsson Á, Driver J. Priming in visual search: Separating the effects of target repetition, distractor repetition and role-reversal. Vision Res. 2008;48(10):1217–32. doi: 10.1016/j.visres.2008.02.007 18374961
13. Libera DC, Chelazzi L. Visual selective attention and the effects of monetary rewards. Psychol Sci. 2006;17(3):222–7. doi: 10.1111/j.1467-9280.2006.01689.x 16507062
14. Hickey C, van Zoest W. Reward-associated stimuli capture the eyes in spite of strategic attentional set. Vision Res. 2013;92:67–74. doi: 10.1016/j.visres.2013.09.008 24084197
15. Hickey C, Chelazzi L, Theeuwes J. Reward changes salience in human vision via the anterior cingulate. J Neurosci. 2010;30(33):11096–103. doi: 10.1523/JNEUROSCI.1026-10.2010 20720117
16. Hickey C, Chelazzi L, Theeuwes J. Reward guides vision when it’s your thing: Trait reward-seeking in reward-mediated visual priming. PLoS One. 2010;5(11):1–5.
17. Wolf C, Heuer A, Schubö A, Schütz AC. The necessity to choose causes effects of reward on saccade preparation. Sci Rep. 2017;7(16966):1–10.
18. Dorris MC, Taylor TL, Klein RM, Munoz DP. Influence of previous visual stimulus or saccade on saccadic reaction times in monkey. J Neurophysiol. 1999;81(5):2429–36. doi: 10.1152/jn.1999.81.5.2429 10322078
19. Heuer A, Wolf C, Schütz AC, Schubö A. The necessity to choose causes reward-related anticipatory biasing: Parieto-occipital alpha-band oscillations reveal suppression of low-value targets. Sci Rep. 2017;7(14318):1–11.
20. Heuer A, Wolf C, Schütz AC, Schubö A. The possibility to make choices modulates feature-based effects of reward. Sci Rep. 2019;9(5749):1–9.
21. Klimesch W. Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci. 2012;16(12):606–17. doi: 10.1016/j.tics.2012.10.007 23141428
22. Noorani I, Carpenter RHS. The LATER model of reaction time and decision. Neurosci Biobehav Rev. 2016;64:229–51. doi: 10.1016/j.neubiorev.2016.02.018 26915927
23. Hommel B. Event files: Feature binding in and across perception and action. Trends Cogn Sci. 2004;8(11):494–500. doi: 10.1016/j.tics.2004.08.007 15491903
24. Hommel B, Müsseler J, Aschersleben G, Prinz W. The Theory of Event Coding (TEC): A framework for perception and action planning. Behav Brain Sci. 2001;24(5):894.
25. Rothermund K, Wentura D, De Houwer J. Retrieval of incidental stimulus-response associations as a source of negative priming. J Exp Psychol Learn Mem Cogn. 2005;31(3):482–95. doi: 10.1037/0278-7393.31.3.482 15910132
26. Frings C, Rothermund K, Wentura D. Distractor repetitions retrieve previous responses to targets. Q J Exp Psychol. 2007;60(10):1367–77.
27. Denkinger B, Koutstaal W. Perceive-Decide-Act, Perceive-Decide-Act: How Abstract Is Repetition-Related Decision Learning? J Exp Psychol Learn Mem Cogn. 2009;35(3):742–56. doi: 10.1037/a0015263 19379047
28. Schütz AC. Interindividual differences in preferred directions of perceptual and motor decisions. J Vis. 2014;14(12):1–17. doi: 10.1167/14.12.1
29. Brainard DH. The Psychophysics Toolbox. Spat Vis. 1997;10(4):433–6. 9176952
30. Cornelissen FW, Peters EM, Palmer J. The Eyelink Toolbox: Eye tracking with MATLAB and the Psychophysics Toolbox. Behav Res Methods, Instruments, Comput. 2002;34(4):613–7.
31. Wagenmakers E-J, Love J, Marsman M, Jamil T, Ly A, Verhagen J, et al. Bayesian inference for psychology. Part II: Example applications with JASP. Psychon Bull Rev. 2017;
32. Jeffreys H. Theory of probability. 3rd editio. Oxford: Oxford University Press; 1961.
33. Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD. Conflict Monitoring and Cognitive Control. Psychol Rev. 2001;108(3):624–52. doi: 10.1037/0033-295x.108.3.624 11488380
34. Naefgen C, Janczyk M. Free choice tasks as random generation tasks: An investigation through working memory manipulations. Exp Brain Res. 2018;236(8):2263–75. doi: 10.1007/s00221-018-5295-2 29850924
35. Huestegge L, Herbort O, Gosch N, Kunde W, Pieczykolan A. Free-choice saccades and their underlying determinants: Explorations of high-level voluntary oculomotor control. J Vis. 2019;19(3):14. doi: 10.1167/19.3.14 30924842
36. Gaspelin N, Luck SJ. The Role of Inhibition in Avoiding Distraction by Salient Stimuli. Trends Cogn Sci. 2018;22(1):79–92. doi: 10.1016/j.tics.2017.11.001 29191511
37. Neill WT. Inhibitory and Facilitatory Processes in Selective Attention. J Exp Psychol Hum Percept Perform. 1977;3(3):444–50.
38. Tipper SP. The negative priming effect: inhibitory priming by ignored objects. Q J Exp Psychol A. 1985;37(4):571–90. doi: 10.1080/14640748508400920 4081101
39. Tipper SP, Brehaut JC, Driver J. Selection of Moving and Static Objects for the Control of Spatially Directed Action. J Exp Psychol Hum Percept Perform. 1990;16(3):492–504. doi: 10.1037//0096-1523.16.3.492 2144566
40. Tipper SP, Weaver B, Milliken B. Spatial Negative Priming Without Mismatching: Comment on Park and Kanwisher (1994). J Exp Psychol Hum Percept Perform. 1995;21(5):1220–9.
41. Neill WT. Episodic retrieval in negative priming and repetition priming. J Exp Psychol Learn Mem Cogn. 1997;23(6):1291–3105.
42. Neill WT, Valdes LA. Persistence of Negative Priming: Steady State or Decay? J Exp Psychol Learn Mem Cogn. 1992;18(3):565–76.
43. Anderson AJ, Yadav H, Carpenter RHS. Directional Prediction by the Saccadic System. Curr Biol. 2008;18(8):614–8. doi: 10.1016/j.cub.2008.03.057 18424143
44. Hooge ITC, Frens MA. Inhibition of saccade return (ISR): Spatio-temporal properties of saccade programming. Vision Res. 2000;40(24):3415–26. doi: 10.1016/s0042-6989(00)00184-x 11058738
45. Dorris MC, Klein RM, Everling S, Munoz DP. Contribution of the primate superior colliculus to inhibition of return. J Cogn Neurosci. 2002;14(8):1256–63. doi: 10.1162/089892902760807249 12495530
46. Hickey C, Chelazzi L, Theeuwes J. Reward-priming of location in visual search. PLoS One. 2014;9(7).
47. Belopolsky AV. Common Priority Map for Selection History, Reward and Emotion in the Oculomotor System. Perception. 2015;44(8–9):920–33. doi: 10.1177/0301006615596866 26562909
48. Ptak R. The Frontoparietal Attention Network of the Human Brain. Neurosci. 2012;18(5):502–15.
49. Fecteau JH, Munoz DP. Salience, relevance, and firing: a priority map for target selection. Vol. 10, Trends in Cognitive Sciences. 2006. p. 382–90. doi: 10.1016/j.tics.2006.06.011 16843702
50. Zelinsky GJ, Bisley JW. The what, where, and why of priority maps and their interactions with visual working memory. Ann N Y Acad Sci. 2015;1339(1):154–64.
51. Bisley JW, Mirpour K. The neural instantiation of a priority map. Curr Opin Psychol. 2019;29:108–12. doi: 10.1016/j.copsyc.2019.01.002 30731260
52. Ipata AE, Gee AL, Bisley JW, Goldberg ME. Neurons in the lateral intraparietal area create a priority map by the combination of disparate signals. Exp Brain Res. 2009;192(3):479–88. doi: 10.1007/s00221-008-1557-8 18762926
53. White BJ, Berg DJ, Kan JY, Marino RA, Itti L, Munoz DP. Superior colliculus neurons encode a visual saliency map during free viewing of natural dynamic video. Nat Commun. 2017;8:1–9. doi: 10.1038/s41467-016-0009-6
54. Thompson KG, Bichot NP. A visual salience map in the primate frontal eye field. Vol. 147, Progress in Brain Research. 2005. p. 251–62. doi: 10.1016/S0079-6123(04)47019-8 15581711
55. Belopolsky AV, van der Stigchel S. Saccades curve away from previously inhibited locations: evidence for the role of priming in oculomotor competition. J Neurophysiol. 2013;110(10):2370–7. doi: 10.1152/jn.00293.2013 23986563
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts