#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Highly multiplexed quantitative PCR-based platform for evaluation of chicken immune responses


Autoři: Dominika Borowska aff001;  Richard Kuo aff001;  Richard A. Bailey aff002;  Kellie A. Watson aff001;  Pete Kaiser aff001;  Lonneke Vervelde aff001;  Mark P. Stevens aff001
Působiště autorů: The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom aff001;  Aviagen Ltd, Edinburgh, Scotland, United Kingdom aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0225658

Souhrn

To address the need for sensitive high-throughput assays to analyse avian innate and adaptive immune responses, we developed and validated a highly multiplexed qPCR 96.96 Fluidigm Dynamic Array to analyse the transcription of chicken immune-related genes. This microfluidic system permits the simultaneous analysis of expression of 96 transcripts in 96 samples in 6 nanolitre reactions and the 9,216 reactions are ready for interpretation immediately. A panel of 89 genes was selected from an RNA-seq analysis of the transcriptional response of chicken macrophages, dendritic cells and heterophils to agonists of innate immunity and from published transcriptome data. Assays were confirmed to be highly specific by amplicon sequencing and melting curve analysis and the reverse transcription and preamplification steps were optimised. The array was applied to RNA of various tissues from a commercial line of broiler chickens housed at two different levels of biosecurity. Gut-associated lymphoid tissues, bursa, spleen and peripheral blood leukocytes were isolated and transcript levels for immune-related genes were defined. The results identified blood cells as a potentially reliable indicator of immune responses among all the tissues tested with the highest number of genes significantly differentially transcribed between birds housed under varying biosecurity levels. Conventional qPCR analysis of three differentially transcribed genes confirmed the results from the multiplex qPCR array. A highly multiplexed qPCR-based platform for evaluation of chicken immune responses has been optimised and validated using samples from commercial chickens. Apart from applications in selective breeding programmes, the array could be used to analyse the complex interplay between the avian immune system and pathogens by including pathogen-specific probes, to screen vaccine responses, and as a predictive tool for immune robustness.

Klíčová slova:

Gene expression – Immune response – Spleen – Polymerase chain reaction – RNA extraction – Birds – RNA sequencing – Chickens


Zdroje

1. Germain RN, Meier-Schellersheim M, Nita-Lazar A, Fraser IDC. Systems biology in immunology–a computational modelling perspective. Annu Rev Immunol. 2011;29:527–585. doi: 10.1146/annurev-immunol-030409-101317 21219182

2. Spurgeon SL, Jones RC, Ramakrishnan R. High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PLoS ONE 2008;3(2):e1662. doi: 10.1371/journal.pone.0001662 18301740

3. Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, Dunaway DL, et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol 2008;26(3):317–325. doi: 10.1038/nbt1385 18278033

4. Roberts E, Card LE. Inheritance of resistance to bacterial infection in animals: a genetic study of pullorum disease. Bulletin University of Illinois (Urbana-Champaign campus). Agricultural Experiment Station 1935;419:467–491.

5. van der Most PJ, de Jong B, Parmentier HK, Verhulst S. Trade-off between growth and immune function: a meta-analysis of selection experiments. Funct Ecol 2011;25:74–80.

6. Swaggerty CL, Pevzner IY, He H, Genovese KJ, Nisbet DJ, Kaiser P, et al. Selection of broilers with improved innate immune responsiveness to reduce on-farm infection by food-borne pathogens. Foodborne Pathog Dis 2009;6:777–783. doi: 10.1089/fpd.2009.0307 19737057

7. Kapell DNRG, Hill WG, Neeteson A-M, McAdam J, Koerhuis ANM, Avendano S. Genetic parameters of foot-pad dermatitis and body weight in purebred broiler lines in 2 contrasting environments. Poult Sci 2012;91:565–574. doi: 10.3382/ps.2011-01934 22334731

8. Smith CK, AbuOun M, Cawthraw SA, Humphrey TJ, Rothwell L, Kaiser P, et al. Campylobacter colonization of the chicken induces a proinflammatory response in mucosal tissues. FEMS Immunol Med Microbiol 2008;54:114–121. doi: 10.1111/j.1574-695X.2008.00458.x 18647351

9. Eldaghayes I, Rothwell L, Williams A, Withers D, Balu S, Davison F, et al. Infectious bursal disease virus: strains that differ in virulence differentially modulate the innate immune response to infection in the chicken bursa. Viral Immunol 2016;19(1):83–91.

10. Kaiser P, Underwood G, Davison F. Differential cytokine responses following Marek's disease virus infection of chickens differing in resistance to Marek's disease. J Virol 2003;77(1):762–768. doi: 10.1128/JVI.77.1.762-768.2003 12477883

11. Borowska D, Rothwell L, Bailey RA, Watson K, Kaiser P. Identification of stable reference genes for quantitative PCR in cells derived from chicken lymphoid organs. Vet Immunol Immunopathol 2016;170:20–24. doi: 10.1016/j.vetimm.2016.01.001 26872627

12. Bliss TW, Dohms JE, Emara MG, Keeler CL Jr.. Gene expression profiling of avian macrophage activation. Vet Immunol Immunopathol 2005;105:289–299. doi: 10.1016/j.vetimm.2005.02.013 15808307

13. Chaussabel D, Semnani RT, McDowell MA, Sacks D, Sher A, Nutman TB. Unique gene expression profiles of human macrophages and dendritic cells to phylogenetically distinct parasites. Blood 2003;102:672–681. doi: 10.1182/blood-2002-10-3232 12663451

14. Chiang H-I, Swaggerty C, Kogut M, Dowd SE, Li X, Pevzner IY, et al. Gene expression profiling in chicken heterophils with Salmonella Enteritidis stimulation using a chicken 44 K Agilent microarray. BMC Genomics 2008;9:526. doi: 10.1186/1471-2164-9-526 18990222

15. Ciraci C, Tuggle C, Mannemuehler MJ, Nettleton D, Lamont SJ. Unique genome-wide transcriptome profiles of chicken macrophages exposed to Salmonella derived endotoxin. BMC Genomics 2010;11:545. doi: 10.1186/1471-2164-11-545 20929591

16. Connell S, Meade KG, Allan B, Lloyd AT, Kenny E, Cormican P, et al. Avian resistance to Campylobacter jejuni colonisation is associated with an intestinal immunogene expression signature identified by mRNA sequencing. PLoS ONE 2010;7(8):e40409.

17. de Kleijn S, Kox M, Sama IE, Pillay J, van Diepen A, Huijnen MA, et al. Transcriptome kinetics of circulating neutrophils during human experimental endotoxemia. PLoS ONE 2012;7(6):e38255. doi: 10.1371/journal.pone.0038255 22679495

18. Gou Z, Liu R, Zhao G, Zheng M, Li P, Wang H, et al. Epigenetic modification of TLRs in leukocytes is associated with increased susceptibility to Salmonella Enteritidis in chickens. PLoS ONE 2012;7(3):e33627. doi: 10.1371/journal.pone.0033627 22438967

19. Guo X, Wang L, Cui D, Ruan W, Liu F, Li H. Differential expression of the toll-like receptor pathway and related genes of chicken bursa after experimental infection with infectious bursa disease virus. Arch Virol 2012;157:2189–2199. doi: 10.1007/s00705-012-1403-y 22828777

20. Huang Q, Liu D, Majewski P, Schulte LC, Korn JM, Young RA, et al. The plasticity of dendritic cell responses to pathogens and their components. Science 2001;294:870–875. doi: 10.1126/science.294.5543.870 11679675

21. Jensen K, Talbot R, Paxton E, Waddington D, Glass EJ. Development and validation of bovine macrophage specific cDNA microarray. BMC Genomics 2006;7:224. doi: 10.1186/1471-2164-7-224 16948847

22. Kapetanovic R, Fairnbairn L, Beraldi D, Sester DP, Archibald AL, Tuggle CK, et al. Pig bone marrow-derived macrophages resemble human macrophages in their response to bacterial lipopolysaccharide. J Immunol 2012;188:3382–3394. doi: 10.4049/jimmunol.1102649 22393154

23. Killick KE, Browne JA, Park SDE, Magee DA, Martin I, Meade KG, et al. Genome-wide transcriptional profiling of peripheral blood leukocytes from cattle infected with Mycobacterium bovis reveals suppression of host immune genes. BMC Genomics 2011;12:611. doi: 10.1186/1471-2164-12-611 22182502

24. Kim C-H, Lillehoj HS, Hong Y-H, Keeler CL Jr., Lillehoj EP. Analysis of global transcriptional responses of chicken following primary and secondary Eimeria acervulina infections. BMC Proc 2011;5 (Suppl 4):S12.

25. Lavric M, Maughan MN, Bliss TW, Dohms JE, Bencina D, Keeler CL Jr, et al. Gene expression modulation in chicken macrophages exposed to Mycoplasma synovie or Escherichia coli. Vet Microbiol 2008;126:111–121. doi: 10.1016/j.vetmic.2007.06.011 17656046

26. Lee JY, Song JJ, Wooming A, Li X, Zhou H, Bottje WG, et al. Transcriptional profiling of host gene expression in chicken embryo lung cells infected with laryngotracheitis virus. BMC Genomics 2010;11:445. doi: 10.1186/1471-2164-11-445 20663125

27. Li X, Swaggerty CL, Kogut MH, Chiang H-I, Wang Y, Genovese KJ, et al. Gene expression profiling of the local caecal response of genetic chicken lines that differ in their susceptibility to Campylobacter jejuni colonization. PLoS One 2010;5:e11827. doi: 10.1371/journal.pone.0011827 20676366

28. Martins RP, Aquilar C, Graham JE, Carvajal A, Bautista R, Claros MG, et al. Pyroptosis and adaptive immunity mechanisms are promptly engendered in mesenteric lymph-nodes during pig infections with Salmonella enterica serovar Typhimurium. Vet Res 2013;44:120. doi: 10.1186/1297-9716-44-120 24308825

29. Mellits KH, Connerton IF, Loughlin MF, Clarke P, Smith J, Dillon E, et al. Induction of a Chemoattractant transcriptional response by a Camylobacter jejuni boiled cell extract in colonocytes. BMC Microbiol 2009;9:28. doi: 10.1186/1471-2180-9-28 19193236

30. Munir S, Singh S, Kaur K, Kapur V. Suppression substractive hybridisation coupled with microarray analysis to examine differential expression of genes in virus infected cells. Biol Proced Online 2004;6:94–104. doi: 10.1251/bpo77 15181476

31. Nau GJ, Richmond JFL, Schlesinger A, Jennings EG, Lander ES, Young RA. Human macrophage activation programs induced by bacterial pathogens. Proc Natl Acad Sci U S A 2002;99:1503–1508. doi: 10.1073/pnas.022649799 11805289

32. Reemers SS, van Leenen D, Groot Koerkamp MJ, van Haarlem D, van der Haar P, van Eden W, et al. Early host responses to avian influenza A virus are prolonged and enhanced at transcriptional level depending on maturation of the immune system. Mol Immunol 2010;47:1675–1685. doi: 10.1016/j.molimm.2010.03.008 20382427

33. Roach JC, Smith KD, Strobe KL, Nissen SM, Haudenschild CD, Zhou D, et al. Transcription factor expression in lipopolysaccharide-acitivated peripheral-blood-derived mononuclear cells. Proc Natl Acad Sci U S A 2007;104:16245–16250. doi: 10.1073/pnas.0707757104 17913878

34. Ruby T, Whittaker C, Withers DR, Chelbi-Alix MK, Morin V, Oudin A, et al. Transcriptional profiling reveals a possible role for the timing of the inflammatory response in determining susceptibility to a viral infection. J Virol 2006;80:9207–9216. doi: 10.1128/JVI.00929-06 16940532

35. Rue CA, Susta L, Cornax I, Brown CC, Kapczynski DR, Suarez DL, et al. Virulent Newcastle disease virus elicits a strong innate immune response in chicken. J Gen Virol 2011;92:931–939. doi: 10.1099/vir.0.025486-0 21177922

36. Sanz-Santos G, Jimenez-Marin A, Bautista R, Fernandez N, Claros GM, Garrido JJ. Gene expression pattern in swine neutrophils after lipopolysaccharide exposure: a time course comparison. BMC Proc 2011;5 (Suppl 4):S11.

37. Schokker D, Peters THF, Hoekman AJW, Rebel JMJ, Smits MA. Differences in the early response of hatchlings of different chicken breeding lines to Salmonella enterica serovar Enteritidis infection. Poult Sci 2012;91:346–353. doi: 10.3382/ps.2011-01758 22252347

38. Schreiber J, Jenner RG, Murray HL, Gerber GK, Gifford DK, Young RA. Coordinated binding of NF-kappaB family members in the response of human cells to lipopolysaccharide. Proc Natl Acad Sci U S A 2006;103 (15):5899–5904. doi: 10.1073/pnas.0510996103 16595631

39. Wang Y, Liu C, Fang Y, Liu X, Li W, Liu S, et al. Transcription analysis on response of porcine alveolar macrophages to Haemophilus parasuis. BMC Genomics 2012;13:68. doi: 10.1186/1471-2164-13-68 22330747

40. Zaffuto KM, Estevez CN, Afonso CL. Primary chicken tracheal cell culture system for the study of infection with avian respiratory viruses. Avian Pathol 2008;37:25–31. doi: 10.1080/03079450701774850 18202946

41. Lawson S, Rothwell L, Lambrecht B, Howes K, Venugopal K, Kaiser P. Turkey and chicken interferon-γ, which share high sequence identity, are biologically cross-reactive. Dev Comp Immunol 2001;25: 69–82. doi: 10.1016/s0145-305x(00)00044-6 10980321

42. Neeteson AM. Striking the balance. J Anim Breed Genet 2010;127:85–86. doi: 10.1111/j.1439-0388.2010.00866.x 20433514

43. Turnpenny JR, Parsons DJ, Armstrong AC, Clark JA, Cooper K, Matthews AM. Integrated models of livestock systems for climate change studies. 2 intensive systems. Glob Change Biol 2001;7:163–170.

44. Garriga C, Hunter RP, Amat C, Planas JM, Mitchell MA, Moreto M. Heat stress increases apical glucose transport in the chicken jejunum. Am J Physiol 2006;290:R195–R201.

45. Lei L, Yu J, Bao E. Expression of the heat shock protein 90 (Hsp90) and transcription of its corresponding mRNA in broilers exposed to high temperature. Br Poult Sci 2009;50:504–511. doi: 10.1080/00071660903110851 19735020

46. Yan J, Bao E, Yu J. Heat shock protein 60 expression in heart, liver and kidney of broilers exposed to high temperature. Res Vet Sci 2009;86:533–538. doi: 10.1016/j.rvsc.2008.09.002 18951595

47. Dalgaard TS, Skovgaard K, Norupa LR, Pleidrupa J, Permin A, Schoud TW, et al. Immune gene expression in the spleen of chickens experimentally infected with Ascaridia galli. Vet Immunol Immunopathol 2015;164:79–86. doi: 10.1016/j.vetimm.2015.01.003 25649508

48. Croville G, Foret C, Heuillard P, Senet A, Delpont M, Mouahid M, et al. Disclosing respiratory coinfections: a broad-range panel assay for avian respiratory pathogens on a nanofluidic PCR platform. Avian Pathol 2018;47(3):253–260. doi: 10.1080/03079457.2018.1430891 29350071


Článok vyšiel v časopise

PLOS One


2019 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#