Predictive sampling effort and species-area relationship models for estimating richness in fragmented landscapes
Autoři:
Noé U. de la Sancha aff001; Sarah A. Boyle aff003
Působiště autorů:
Department of Biological Sciences, Chicago State University, Chicago, Illinois, United States of America
aff001; Integrative Research Center, The Field Museum of Natural History, Chicago, Illinois, United States of America
aff002; Department of Biology, Rhodes College, Memphis, Tennessee, United States of America
aff003
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0226529
Souhrn
Loss of habitat, specifically deforestation, is a major driver of biodiversity loss. Species-area relationship (SAR) models traditionally have been used for estimating species richness, species loss as a function of habitat loss, and extrapolation of richness for given areas. Sampling-species relationships (SSRs) are interrelated yet separate drivers for species richness estimates. Traditionally, however, SAR and SSR models have been used independently and not incorporated into a single approach. We developed and compared predictive models that incorporate sampling effort species-area relationships (SESARS) along the entire Atlantic Forest of South America, and then applied the best-fit model to estimate richness in forest remnants of Interior Atlantic Forest of eastern Paraguay. This framework was applied to non-volant small mammal assemblages that reflect different tolerances to forest loss and fragmentation. In order to account for differences in functionality we estimated small mammal richness of 1) the entire non-volant small mammal assemblage, including introduced species; 2) the native species forest assemblage; and 3) the forest-specialist assemblage, with the latter two assemblages being subsets of the entire assemblage. Finally, we geospatially modeled species richness for each of the three assemblages throughout eastern Paraguay to identify remnants with high species richness. We found that multiple regression power-law interaction-term models that only included area and the interactions of area and sampling as predictors, worked best for predicting species richness for the entire assemblage and the native species forest assemblage, while several traditional SAR models (logistic, power, exponential, and ratio) best described forest-specialist richness. Species richness was significantly different between assemblages. We identified obvious remnants with high species richness in eastern Paraguay, and these remnants often were geographically isolated. We also found relatively high predicted species richness (in relation to the entire range of predicted richness values) in several geographically-isolated, medium-size forest remnants that likely have not been considered as possible priority areas for conservation. These findings highlight the importance of using an empirical dataset, created using sources representing diverse sampling efforts, to develop robust predictive models. This approach is particularly important in geographic locations where field sampling is limited yet the geographic area is experiencing rapid and dramatic land cover changes. When combined, area and sampling are powerful modeling predictors for questions of biogeography, ecology, and conservation, especially when addressing habitat loss and fragmentation.
Klíčová slova:
Mammals – Forests – Species diversity – Deforestation – Biodiversity – Species extinction – Paraguay
Zdroje
1. Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B. Defaunation in the anthropocene. Science. American Association for the Advancement of Science; 2014;345: 401–406.
2. FAO. Global Forest Resources Assessment 2015. How are the world's forests changing? (Second edition). 2016; 1–54.
3. Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M. The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science. 2008;322: 225–230. doi: 10.1126/science.1165115 18845749
4. Costello MJ. Biodiversity: The known, unknown, and rates of extinction. Current Biology. Elsevier Ltd; 2015;25: R368–R371.
5. Mendes Pontes AR, Beltrão ACM, Normande IC, Malta A de JR, Silva Júnior APD, Santos AMM. Mass extinction and the disappearance of unknown mammal species: scenario and perspectives of a biodiversity hotspot’s hotspot. Umapathy G, editor. PLoS ONE. Public Library of Science; 2016;11: e0150887–26.
6. de la Sancha NU, López-González C, D’Elía G, Myers P, Valdez L, Ortiz ML. An annotated checklist of the mammals of Paraguay. THERYA. 2017;8: 241–260.
7. Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation. 2009;142: 1141–1153.
8. Oliveira Filho AT, Fontes MAL. Patterns of Floristic Differentiation among Atlantic Forests in Southeastern Brazil and the Influence of Climate. Biotropica. 2000;32: 793–810.
9. Mittermeier CG, Myers N, Gil PR, Mittermeier RA. Hotspots: earth's biologically richest and most endangered terrestrial ecoregions. Monterrey, Mexico: Cemex, Conservation International and Agrupacion Sierra Madre; 1999.
10. Huang C, Kim S, Altstatt A, Townshend JRG, Davis P, Song K, et al. Rapid loss of Paraguay's Atlantic forest and the status of protected areas—A Landsat assessment. Remote Sensing of Environment. 2007;106: 460–466.
11. Huang C, Kim S, Song K, Townshend JRG, Davis P, Altstatt A, et al. Assessment of Paraguay's forest cover change using Landsat observations. Global and Planetary Change. 2009;67: 1–12.
12. Fleytas FC. Cambios en el Paisaje: Evolución de la cobertura vegetal en la Región Oriental del Paraguay. In: Salas Dueñas DA, Facetti JF, editors. Biodiversidad del Paraguay una aproximación a sus realidades. Asunción, Paraguay; 2007. pp. 77–88.
13. Arce-Peña NP, Arroyo-Rodríguez V, San-José M, Jiménez-González D, Franch-Pardo I, Andresen E, et al. Landscape predictors of rodent dynamics in fragmented rainforests. Biodivers Conserv. 2nd ed. Springer Netherlands; 2018;28: 655–669.
14. Fahrig L. Rethinking patch size and isolation effects: the habitat amount hypothesis. Journal of Biogeography. 2013;40: 1649–1663. doi: 10.1111/jbi.12130
15. Tuff KT, Tuff T, Davies KF. A framework for integrating thermal biology into fragmentation research. O'Connor M, editor. Ecol Lett. 2016;19: 361–374. doi: 10.1111/ele.12579 26892491
16. Bovendorp RS, Brum FT, MCCleery RA, Baiser B, Loyola R, Cianciaruso MV, et al. Defaunation and fragmentation erode small mammal diversity dimensions in tropical forests. Ecography. 2018;69: 473–14.
17. Huang C, Kim S, Song K, Townshend JRG, Davis P, Altstatt A, et al. Assessment of Paraguay's forest cover change using Landsat observations. Global and Planetary Change. 2009;67: 1–12.
18. Scheiner SM, Chiarucci A, Fox GA, Helmus MR, McGlinn DJ, Willig MR. The underpinnings of the relationship of species richness with space and time. Ecological Monographs. 2011;81: 195–213.
19. Collins MD, Vázquez DP, Sanders NJ. Species–area curves, homogenization and the loss of global diversity. Evolutionary Ecology Research. 2002; 457–464.
20. MacArthur RH, Wilson EO. Island Biogeography Theory. Princeton, N.J.: Princeton University Press; 1967.
21. Desmet P, Cowling R. Conservation Ecology: Human-caused disturbance stimuli as a form of predation risk. Ecology and Society. 2004;2: 1–11.
22. Williams MR, Lamont BB, Henstridge JD. Species-area functions revisited. Journal of Biogeography. 2009;36: 1994–2004.
23. Guilhaumon F, Gimenez O, Gaston KJ, Mouillot D. Taxonomic and regional uncertainty in species-area relationships and the identification of richness hotspots. Proc Natl Acad Sci USA. National Academy of Sciences; 2008;105: 15458–15463.
24. Preston FW. The canonical distribution of commonness and rarity: Part I. Ecology. Eco Soc America; 1962;43: 185–215.
25. Guilhaumon F, Mouillot D, Gimenez O. mmSAR: an R-package for multimodel species–area relationship inference. Ecography. Wiley Online Library; 2010;33: 420–424.
26. Connor EF, McCoy ED. The statistics and biology of the species-area relationship. The American Naturalist. JSTOR; 1979;113: 791–833.
27. Dengler JR, Dengler J. Which function describes the species-area relationship best? A review and empirical evaluation. Journal of Biogeography. 2009;36: 728–744.
28. Dengler JR, Dengler J. Pitfalls in small-scale species-area sampling and analysis. Folia Geobot. 2nd ed. 2008;43: 269–287.
29. Schoener T. The species-area relation within archipelagos: models and evidence from island land birds. Proceedings of the XVI International Ornithological Congress. Australian Academy of Science: 1976; 629–642.
30. Smith AB. Caution with curves: Caveats for using the species–area relationship in conservation. Biological Conservation. 2010;143: 555–564.
31. Rosenzweig ML. Species Diversity in Space and Time. Cambridge: Cambridge University Press; 1995.
32. Tjørve E. Shapes and functions of species-area curves: a review of possible models. Journal of Biogeography. 2003;30: 827–835.
33. Lawton J. Community Ecology in a Changing World. Oldendorf/Lufe, Germany: Inter-Research Science Publisher and Ecology Institute; 2000.
34. Lomolino MV. The species-area relationship: new challenges for an old pattern. Progress in Physical Geography. Sage Publications; 2001;25: 1–21.
35. Tjørve E. Shapes and functions of species-area curves (II): a review of new models and parameterizations. Journal of Biogeography. 2009;36: 1435–1445.
36. Scheiner SM. Six Types of Species-Area Curves. Global Ecology and Biogeography. 2003;12: 441–447.
37. Scheiner SM, Chiarucci A, Fox GA, Helmus MR, McGlinn DJ, Willig MR. The underpinnings of the relationship of species richness with space and time. Ecological Monographs. 2011;81: 195–213.
38. Stevens RD, Rowe RJ, Badgley C. Gradients of mammalian biodiversity through space and time. Journal of Mammalogy. 2019;100: 1069–1086.
39. Rybicki J, Hanski I. Species-area relationships and extinctions caused by habitat loss and fragmentation. Ecol Lett. 2013;16: 27–38. doi: 10.1111/ele.12065 23452159
40. Ulrich W. Predicting species numbers using species? Area and endemics? Area relations. Biodivers Conserv. 2005;14: 3351–3362.
41. He F, Hubbell SP. Species–area relationships always overestimate extinction rates from habitat loss. Nature. 2011;473: 368–371. doi: 10.1038/nature09985 21593870
42. Brooks TM. Extinctions: consider all species. Nature. 2011;474: 284–284.
43. Beck J. Update: Species–area curves and the estimation of extinction rates. Frontiers of Biogeography. 2011;3: 81–83.
44. Evans M, Possingham H, Wilson K. Extinctions: conserve not collate. Nature. 2011; 474: 284.
45. Pereira HM, Borda-de-Água L, Martins IS. Geometry and scale in species–area relationships. Nature. 2012;482: E3–E4. doi: 10.1038/nature10857 22358846
46. He F, Hubbell S. Estimating extinction from species—area relationships: why the numbers do not add up. Ecology. 2013;94: 1905–1912. doi: 10.1890/12-1795.1 24279261
47. Thomas CD, Williamson M. Extinction and climate change. Nature. 2012;482: E4–E5. doi: 10.1038/nature10858 22358847
48. Axelsen JB, Roll U, Stone L, Solow A. Species-area relationships always overestimate extinction rates from habitat loss: comment. Ecology. 2013;94: 761–763. doi: 10.1890/12-0047.1 23687901
49. Kinzig AP, Harte J. Implications of Endemics-Area Relationships for Estimates of Species Extinctions. Ecology. 2000;12: 3305–3311.
50. Harte J, Kinzig AP. On the implications of species-area relationships for endemism, spatial turnover, and food web patterns. Oikos. 1997;80: 417–427.
51. Matthews TJ, Cottee-Jones HE, Whittaker RJ. Habitat fragmentation and the species-area relationship: a focus on total species richness obscures the impact of habitat loss on habitat specialists. Diversity Distrib. 2014;20: 1136–1146.
52. Fattorini S. To fit or not to fit? A poorly fitting procedure produces inconsistent results when the species–area relationship is used to locate hotspots. Biodivers Conserv. 2006;16: 2531–2538.
53. Benchimol M, Benchimol MR, Peres CA. Anthropogenic modulators of species-area relationships in Neotropical primates: a continental-scale analysis of fragmented forest landscapes. Watson J, editor. Diversity Distrib. 2013;19: 1339–1352.
54. Stiles A, Scheiner SM. Evaluation of species-area functions using Sonoran Desert plant data: not all species-area curves are power functions. Oikos. 2007;116: 1930–1940.
55. Arrhenius O. Species and area. Journal of Ecology. 1921; 95–99.
56. Hanski I, Zurita GA, Bellocq MI, Rybicki J. Species–fragmented area relationship. 2013. 2715–12720.
57. Benchimol M, Peres CA. Anthropogenic modulators of species-area relationships in Neotropical primates: a continental-scale analysis of fragmented forest landscapes. Diversity Distrib. 2013;19: 1339–1352.
58. Azovsky AI. Species-area and species-sampling effort relationships: disentangling the effects. Ecography. 2011;34: 18–30.
59. de la Sancha NU, la Sancha de NU, Higgins CL, Presley SJ, Strauss RE. Metacommunity structure in a highly fragmented forest: has deforestation in the Atlantic Forest altered historic biogeographic patterns? Diversity Distrib. 2014;20: 1058–1070.
60. Stevens RD, Willig MR, Strauss RE. Latitudinal gradients in the phenetic diversity of New World bat communities. Oikos. 2006;112: 41–50.
61. Stevens RD. Untangling latitudinal richness gradients at higher taxonomic levels: familial perspectives on the diversity of new world bat communities. Journal of Biogeography. 2004;31: 665–674.
62. Stevens RD, Gavilanez MM. Dimensionality of community structure: phylogenetic, morphological and functional perspectives along biodiversity and environmental gradients. Ecography. 2015;38: 861–875.
63. López-González C, Presley SJ, Lozano A, Stevens RD, Higgins CL. Ecological biogeography of Mexican bats: the relative contributions of habitat heterogeneity, beta diversity, and environmental gradients to species richness and composition patterns. Ecography. 2014;38: 261–272.
64. Stevens RD, Cox SB, Strauss RE, Willig MR. Patterns of functional diversity across an extensive environmental gradient: vertebrate consumers, hidden treatments and latitudinal trends. Ecol Lett. 2003;6: 1099–1108.
65. Cam E, Nichols JD, Hines JE, Sauer JR, Alpizar-Jara R, Flather CH. Disentangling Sampling and Ecological Explanations Underlying Species-Area Relationships. Ecology. 2002;83: 1118–22.
66. Gonçalves F, Bovendorp RS, Beca G, Bello C, Costa-Pereira R, et al. ATLANTIC MAMMAL TRAITS: a data set of morphological traits of mammals in the Atlantic Forest of South America. Ecology, 2018;99: 498. doi: 10.1002/ecy.2106 29399824
67. Bovendorp RS, Villar N, De Abreu-Junior EF, Bello C, Regolin AL, Percequillo AR, et al. ATLANTIC SMALL-MAMMAL: a dataset of communities of rodents and marsupials of the Atlantic Forests of South America. Ecology. 2017;98.
68. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, et al. High-resolution global maps of 21st-century forest cover change. Science. American Association for the Advancement of Science; 2013;342: 850–853.
69. Barret GW, Peles JD. Landscape ecology of small mammals. Barret GW, Peles GW, editors. New York, NY: Springer-Verlag; 1999.
70. de la Sancha NU. Patterns of small mammal diversity in fragments of subtropical Interior Atlantic Forest in eastern Paraguay. Mammalia. 2014;78: 437–449.
71. Tanentzap AJ, Walker S, Theo Stephens RT, Lee WG. A framework for predicting species extinction by linking population dynamics with habitat loss. Conservation Letters. 2012;5: 149–156.
72. Pires AS, Koeler Lira P, Fernandez FAS, Schittini GM, Oliveira LC. Frequency of movements of small mammals among Atlantic Coastal Forest fragments in Brazil. Biological Conservation. 2002;108: 229–237.
73. Pardini R. Effects of forest fragmentation on small mammals in an Atlantic Forest landscape. Biodivers Conserv. 2004;13: 2567–2586.
74. Umetsu F, Pardini R. Small mammals in a mosaic of forest remnants and anthropogenic habitats—evaluating matrix quality in an Atlantic forest landscape. Landscape Ecol. 2007;22: 517–530.
75. Lomolino MV. The species-area relationship: new challenges for an old pattern. Progress in Physical Geography. 2001;25: 1–21.
76. Matthews TJ, Cottee-Jones HE, Whittaker RJ. Habitat fragmentation and the species-area relationship: a focus on total species richness obscures the impact of habitat loss on habitat specialists. Diversity Distrib. 2014;20: 1136–1146.
77. Zuur A, Ieno EN, Smith GM. Analyzing Ecological Data. New York, NY: Springer Science & Business Media; 2007.
78. Crawley MJ. Statistics. 2nd ed. John Wiley & Sons; 2015.
79. de la Sancha NU, Maestri R, Bovendorp RS, Higgins CL. Disentangling drivers of small mammal diversity in a highly fragmented forest system. Biotropica. 2019.
80. Wood S. Package “mgcv.” R package version. 2015. http://cran.stat.auckland.ac.nz/web/packages/mgcv/mgcv.pdf
81. Xiao X, White EP, Hooten MB, Durham SL. On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. Ecology. 2011;92: 1887–1894. doi: 10.1890/11-0538.1 22073779
82. Magurran AE. Measuring Biological Diversity. Malden, MA: Blackwell Science Ltd; 2004.
83. Burnham KP, Anderson DR. Model Selection and Multimodel Inference. New York: Springer-Verlag; 2002.
84. Horne JS, Garton EO. Selecting the best home range model: an information-theoretic approach. Ecology. 2006;87: 1146–1152. doi: 10.1890/0012-9658(2006)87[1146:stbhrm]2.0.co;2 16761593
85. Leal CG, de Gusmao Camara I. The Atlantic Forest of South America. Island Press; 2003. pp. 1–473.
86. Brooks TM, Pimm SL, Oyugi JO. Time lag between deforestation and bird extinction in tropical forest fragments. Conservation Biology. 1999;13: 1140–1150.
87. Cardillo M, Mace GM, Jones KE, Bielby J, Bininda-Emonds ORP, Sechrest W, et al. Multiple causes of high extinction risk in large mammal species. Science. 2005;309: 1239–1241. doi: 10.1126/science.1116030 16037416
88. Henle K, Davies KF, Kleyer M, Margules C, Settele J. Predictors of Species Sensitivity to Fragmentation. Biodivers Conserv. 2004;13: 207–251.
89. Mittermeier RA, Myers N, Mittermeier CG. Hotspots: Earth’s biologically richest and most endangered terrestrial ecoregions. Mexico City: CEMAX, S.A; 1999.
90. Da Ponte E, Mack B, Wohlfart C, Rodas O, Fleckenstein M, Oppelt N, et al. Assessing Forest Cover Dynamics and Forest Perception in the Atlantic Forest of Paraguay, Combining Remote Sensing and Household Level Data. Forests. 2017;8: 389–21.
91. de la Sancha NU, López-González C, D’Elía G, Myers P, Valdez L, Ortiz. An annotated checklist of the mammals of Paraguay. THERYA, 2017;8: 241–260.
92. de la Sancha N, D’Elía G, Netto F, Pérez P, Salazar-Bravo J. Discovery of Juliomys (Rodentia, Sigmodontinae) in Paraguay, a new genus of Sigmodontinae for the country's Atlantic Forest. Mammalia. 2009;73: 162–167.
93. Lanzone C, Labaroni CA, Formoso A, Buschiazzo LM, Da Rosa F, Teta P. Diversidad, sistemática y conservación de roedores en el extremo sudoccidental del Bosque Atlántico Interior. Revista del Museo Argentino de Ciencias Naturales nueva serie, 2018; 20: 151–164.
94. Owen RD, Sánchez H., Atkinson K, McMahon L, Jonsson CB. New and noteworthy records of rodents (Mammalia, Rodentia, Cricetidae and Echimyidae) from Paraguay. Check List, 2018;14: 721–730.
95. de la Sancha NU, Libardi GS, Pardiñas UFJ. Discovery of a new genus record for Paraguay, the Atlantic Forest endemic rodent, Abrawayaomys (Cricetidae, Sigmodontinae). 2020. Mammalia. 84;4.
96. Da Ponte E, Roch M, Leinenkugel P, Dech S, Kuenzer C. Paraguay's Atlantic Forest cover loss—Satellite-based change detection and fragmentation analysis between 2003 and 2013. Applied Geography. 2017;79: 37–49.
97. Boyle SA, Kennedy CM, Torres J, Colman K, Pérez-Estigarribia PE, de la Sancha NU. High-Resolution Satellite Imagery Is an Important yet Underutilized Resource in Conservation Biology. PLoS ONE. 2014;9: e86908–11. doi: 10.1371/journal.pone.0086908 24466287
98. Fisher JRB, Acosta EA, Dennedy-Frank PJ, Kroeger T, Boucher TM. Impact of satellite imagery spatial resolution on land use classification accuracy and modeled water quality. Remote Sens Ecol Conserv. 2017;4: 137–149.
99. Barlow J, Lennox GD, Ferreira J, Berenguer E, Lees AC, Mac Nally R, et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature. 2016;535: 144–147. doi: 10.1038/nature18326 27362236
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts