Spatial ecology of coyotes in the urbanizing landscape of the Cuyahoga Valley, Ohio
Autoři:
Gregory A. Franckowiak aff001; Marlo Perdicas aff002; Gregory A. Smith aff003
Působiště autorů:
Depatment of Biology, The University of Akron, Akron, Ohio, United States of America
aff001; Summit Metro Parks, Akron, Ohio, United States of America
aff002; Department of Biological Sciences, Kent State University at Stark, N. Canton, Ohio, United States of America
aff003
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0227028
Souhrn
Urban landscapes can present ecological challenges for wildlife species, yet many species survive, and even thrive, near dense human populations. Coyotes (Canis latrans), for example, have expanded their geographic range across North America and, as a result of their adaptability and behavioral flexibility, are now a common occupant of many urban areas in the United States. We investigated the spatial ecology of 27 coyotes fitted with Global Positioning System (GPS) telemetry collars radio-collared in the Cuyahoga Valley, Ohio. Our objectives were to quantify coyote space use, evaluate resource selection, and investigate coyote movement and activity patterns. To measure space use, we estimated home range (95%) and core area (50%) size of coyotes using the adaptive local convex hull (a-LoCoH) method. We found the mean (± SE) home range size of resident coyotes (4.7 ± 1.8 km2) was significantly smaller than ranges of transient coyotes (67.7 ± 89.6 km2). Similarly, mean (± SE) core area size of resident coyotes (0.9 ± 0.6 km2) was significantly smaller than core areas of transient coyotes (11.9 ± 16.7 km2). Home range and core area size of both resident and transient coyotes did not vary by sex, age, or season. For all coyotes, use of natural land cover was significantly greater than use of altered and developed land. When coyotes were using altered and developed land, GPS fixes were most common at night. Coyote movement patterns differed with respect to status, time period, and season; peaking during nighttime hours. A better understanding of coyote space use and movement within anthropogenic landscapes aids management of people, parks, and wildlife by providing the data necessary for research-based management decisions.
Klíčová slova:
Habitats – Valleys – Urban ecology – Urban areas – Wildlife – Human mobility – Coyotes – Ohio
Zdroje
1. Hamer AJ, Mcdonnell MJ. The response of herpetofauna to urbanization: Inferring patterns of persistence from wildlife databases. Austral Ecol. 2010;35: 568–580. doi: 10.1111/j.1442-9993.2009.02068.x
2. McKinney Michaek L. Urbanization, biodiversity, and conservation. Bioscience. 2002;52: 883–890.
3. Lowry H, Lill A, Wong BBM. Behavioural responses of wildlife to urban environments. Biol Rev. 2013;88: 537–549. doi: 10.1111/brv.12012 23279382
4. Riley SPD. Spatial ecology of bobcats and gray foxes in urban and rural zones of a national park. J Wildl Manage. 2006;70: 1425–1435. doi: 10.2193/0022-541x(2006)70[1425:seobag]2.0.co;2
5. Gese EM, Morey PS, Gehrt SD. Influence of the urban matrix on space use of coyotes in the Chicago metropolitan area. J Ethol. 2012;30: 413–425. doi: 10.1007/s10164-012-0339-8
6. Grubbs SE, Krausman PR. Use of urban landscape by coyotes. Southwest Nat. 2009;54: 1–12. doi: 10.1894/mlk-05.1
7. Gehrt SD, Anchor C, White LA. Home range and landscape use of coyotes in a metropolitan landscape: Conflict or coexistence? J Mammal. 2009;90: 1045–1057. doi: 10.1644/08-mamm-a-277.1
8. Mueller MA, Dranke D, Allen ML. Coexistence of coyotes (Canis latrans) and red foxes (Vulpes vulpes) in an urban landscape. PLoS One. 2018;13: 1–19. https://doi.org/10.1371/journal.pone.0190971
9. Poessel SA, Mock EC, Breck SW. Coyote (Canis latrans) diet in an urban environment: Variation relative to pet conflicts, housing density, and season. Can J Zool. 2017;95: 287–297. doi: 10.1139/cjz-2016-0029
10. Larson RN, Morin DJ, Wierzbowska IA, Crooks KR. Food fabits of coyotes, gray foxes, and bobcats in a coastal southern California urban landscape. West North Am Nat. 2015;75: 339–347. doi: 10.3398/064.075.0311
11. Lukasik VM, Alexander SM. Spatial and temporal variation of coyote (Canis latrans) diet in Calgary, Alberta. Cities Environ. 2016;4: 1–25. doi: 10.15365/cate.4182011
12. Gehrt SD, Riley SPD. Coyotes (Canis latrans). In: Gehrt SD, Riley SPD, Cypher BL, editors. Urban carnivores: ecology, conflict, and conservation. Baltimore, MD: The John Hopkins University Press; 2010. pp. 79–95.
13. Morey PS, Gese EM, Gehrt S. Spatial and temporal variation in the diet of coyotes in the Chicago metropolitan area. Am Midl Nat. 2007;158: 147–161. doi: 10.1674/0003-0031(2007)158[147:satvit]2.0.co;2
14. Quinn T. Coyote (Canis latrans) food habits in three urban habitat types of western Washington. Northwest Sci. 1997;71: 1–5.
15. Poessel SA, Breck SW, Teel TL, Shwiff S, Crooks KR, Angeloni L. Patterns of human-coyote conflicts in the Denver Metropolitan Area. J Wildl Manage. 2013;77: 297–305. doi: 10.1002/jwmg.454
16. Grinder M, Krausman PR. Morbidity—mortality factors and survival of an urban coyote population in Arizona. J Wildl Dis. 2001;37: 312–317. doi: 10.7589/0090-3558-37.2.312 11310882
17. Crooks KR, Soule ME. Mesopredator release and avifaunal extinctions in a fragmented system. Nature. 1999;400: 563–566.
18. Henke SE, Bryant FC. Effects of Coyote removal on the faunal community in Western Texas. J Wildl Manage. 1999;63: 1066–1081.
19. Quinn T. Coyote (Canis latrans) habitat selection in urban areas of western Washington via analysis of routine movements. Northwest Sci. 1997;71: 289–297. Available: http://www.ncbi.nlm.nih.gov/pubmed/13524
20. Riley SPD, Sauvajot RM, Fuller TK, York EC, Kamradt DA, Bromley C, et al. Effects of urbanization and habitat fragmentation on bobcats and coyotes in southern California. Conserv Biol. 2003;17: 566–576.
21. Atwood TC, Weeks HP, Gehring TM. Spatial ecology of coyotes along a suburban-to-rural gradient. J Wildl Manage. 2004;68: 1000–1009. doi: 10.2193/0022-541X(2004)068[1000:SEOCAA]2.0.CO;2
22. Poessel SA, Breck SW, Gese EM. Spatial ecology of coyotes in the Denver metropolitan area: Influence of the urban matrix. J Mammal. 2016;97: 1414–1427. doi: 10.1093/jmammal/gyw090
23. Way JG, Ortega IM, Strauss EG. Movement and activity patterns of eastern coyotes in a coastal, suburban environment. Northeast Nat. 2004;11: 237–254. doi: 10.1656/1092-6194(2004)011[0237:MAAPOE]2.0.CO;2
24. Franckowiak GA, Torres-Poché Z, Poché RM. Activity patterns by feral hogs in the Texas panhandle. Am Midl Nat. 2018;180: 233–245. doi: 10.1674/0003-0031-180.2.233
25. Olson TL, Squibb RC, Gilbert BK. Brown bear diurnal activity and human use: A comparison of two salmon streams. Ursus. 1998;10: 547–555.
26. Sweanor LL, Logan KA, Bauer JW, Millsap B, Boyce WM. Puma and human spatial and temporal use of a popular California state park. J Wildl Manage. 2008;72: 1076–1084. doi: 10.2193/2007-024
27. Sikes RS, The Animal Care and Use Committee of the American Society of Mammalogists. Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J Mammal. 2016;97: 663–688. doi: 10.1093/jmammal/gyw078 29692469
28. United States Census Bureau. Population Finder [Internet]. 2010 [cited 1 May 2019]. Available: http://www.census.gov/popfinder/
29. National Park Service. Cuyahoga Valley National Park Reports [Internet]. 2019 [cited 13 Apr 2019]. Available: https://irma.nps.gov/Stats/Reports/Park/CUVA
30. National Weather Service. Weather history for Akron, OH. [Internet]. 2019 [cited 13 Apr 2019]. Available: https://w2.weather.gov/climate/xmacis.php?wfo=cle
31. Gier HT. Coyotes in Kansas. Kansas State Agricultural Experiment Station Bulletin. 1968.
32. ESRI. Desktop. Redlands, CA: Environmental Systems Research Institute; 2010.
33. Rempel RS, Rodgers AR. Effects of differential correction on accuracy of a GPS animal location system. J Wildl Manage. 1997;61: 525–530. doi: 10.2307/3802611
34. Kamler JF, Gipson PS. Space and habitat use by resident and transient coyotes. Can J Zool. 2000;78: 2106–2111. doi: 10.1139/z00-153
35. Hennessy CA, Dubach J, Gehrt SD. Long-term pair bonding and genetic evidence for monogamy among urban coyotes (Canis latrans). J Mammal. 2012;93: 732–742. doi: 10.1644/11-mamm-a-184.1
36. Gese EM, Rongstad OJ, Mytton WR. Home range and habitat use of coyotes in southeastern Colorado. J Wildl Manage. 1988;52: 640–646. doi: 10.2307/3800923
37. Chavez, Adreas S, Gese EM. Landscape use and movements of wolves in relation to livestock in a wildland–agriculture matrix. J Wildl Manage. 2006;70: 1079–1086. doi: 10.2193/0022-541x(2006)70[1079:luamow]2.0.co;2
38. Getz WM, Fortmann-Roe S, Cross PC, Lyons AJ, Ryan SJ, Wilmers CC. LoCoH: Nonparameteric Kernel methods for constructing home ranges and utilization distributions. PLoS One. 2007;2: 1–11. doi: 10.1371/journal.pone.0000207 17299587
39. Ellington EH, Gehrt SD. Behavioral responses by an apex predator to urbanization. Behav Ecol. 2019; 1–9. doi: 10.1093/beheco/arz019 31210723
40. Calenge C. The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecol Modell. 2006;197: 516–519.
41. RStudio Team. RStudio: Integrated Development Environment for R. RStudio, Inc., [Internet]. Boston MA; 2015. Available: http://www.rstudio.com/
42. Getz WM, Wilmers CC. A local nearest-neighbor convex-hull construction of home ranges and utilization distributions. Ecography (Cop). 2004;27: 489–505. Available: file:///Users/melindaconners/Dropbox/Papers2/Articles/2004/Unknown/2004-74.pdf%5Cnfile:///Users/melindaconners/Documents/PDFs/Papers2/Articles/2004/Unknown/2004-74.pdf
43. Mohr CO. Table of equivalent populations of North American small mammals. Am Midl Nat. 1947;37: 223–249.
44. Homer CG, Fry JA, Barnes CA. The National land cover database [Internet]. Fact Sheet. Reston, VA; 2012. doi: 10.3133/fs20123020
45. ODOT. Ohio Transportation Systems Data Download [Internet]. 2019 [cited 2 Feb 2019]. Available: https://gis.dot.state.oh.us/tims/Data/Download
46. Johnson DH. The comparison of usage and availability measurements for evaluating resource preference. Ecology. 1980;61: 65–71. doi: 10.2307/1937156
47. Northrup J. M., Hooten M. B., Anderson, Anderson JR., C. R., Wittemyer G. Practical guidance on characterizing availability in resource selection functions under a use-availability design. Ecology. 2013;94: 1456–1463. Available: doi: 10.1890/12-1688.1 23951705
48. Beyer HL. Geospatial Modelling Environment | SpatialEcology.Com [Internet]. Geospatial Modeling Environment. 2015. http://www.spatialecology.com/gme
49. Wickham H. ggplot2: Elegant Graphics for Data Analysis [Internet]. Springer-Verlag, New York; 2016. Available: https://ggplot2.tidyverse.org
50. Zuur A, Ieno E, Walker N, Saveliev A, Smith G. Mixed effects models and extensions in ecology with R [Internet]. Journal of Statistical Software November. Springe-Verlkag, New York; 2009. Available: http://www.jstatsoft.org/%5Cnhttp://www.highstat.com/
51. Zuur AF, Ieno EN, Elphick CS. A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol. 2010;1: 3–14. doi: 10.1111/j.2041-210X.2009.00001.x
52. Fox J, Weisberg S. An R Companion to Applied Regression. Thousand Oaks, CA: Sage; 2018.
53. Bates D, Maechler M, Bolker BM, Walker S. lme4: Linear mixed-effects models using Eigen and S4. Journal of Statistical Software. 2015. doi: http://lme4.r-forge.r-project.org/
54. Bartoń K. Package MuMIn: Multi-Model Inference [Internet]. 2018. Available: https://cran.r-project.org/web/packages/MuMIn/index.html
55. Burnham KP, Anderson DR. Model selection and multi-model inference: [Internet]. Second Edi. Springer-Verlag. New York, New York: Springer-Verlag; 2002. doi: 10.1017/CBO9780511802461.005
56. Andelt WF, Gipson PS. Home range, activity, and daily movements of coyotes. J Wildl Manage. 1979;43: 944–951.
57. Person DK, Hirth DH. Home range and habitat use of coyotes in a farm region of Vermont. J Wildl Manage. 1991;55: 433–441.
58. Holzman S, Conroy MJ, Pickering J. Home range, movements, and habitat use of coyotes in southcentral Georgia. J Wildl Manage. 1992;56: 139–146.
59. Tigas LA, Van Vuren DH, Sauvajot RM. Behavioral responses of bobcats and coyotes to habitat fragmentation and corridors in an urban environment. Biol Conserv. 2002;108: 299–306. doi: 10.1016/S0006-3207(02)00120-9
60. Andelt WF. Behavioral cology of coyotes in south Texas. Wildl M. 1985;94: 3–45.
61. Schrecengost JD, Kilgo JC, Ray HS, Miller K V. Home range, habitat use and survival of coyotes in western South Carolina. Am Midl Nat. 2009;162: 346–355. doi: 10.1674/0003-0031-162.2.346
62. Danner DA, Smith NS. Coyote home range, movement, and relative abundance near a cattle feed yard. 2009;44: 484–487.
63. Althoff DP, Gipson PS. Coyote family spatial relationships with reference to poultry losses. he J Wildl Manag. 1981;45: 641–649.http://dx.doi.org/10.3238/zfa.2014.0508-0516
64. Kamler JF, Ballard WB, Lemons PR, Gilliland RL, Mote K. Home range and habitat use of coyotes in an area of native prairie, farmland and CRP fields. Am Midl Nat. 2005;153: 396–404. doi: 10.1674/0003-0031(2005)153
65. Chamberlain MJ, Lovell CD, Leopold BD. Spatial-use patterns, movements, and interactions among adult coyotes in central Mississippi. Can J Zool. 2000;78: 2087–2095. doi: 10.1139/z00-154
66. Fedriani JM, Fuller TK, Sauvajot RM. Does availability of anthropogenic food enhance densities of omnivorous mammals? An example with coyotes in southern California. Ecography (Cop). 2001;24: 325–331. doi: 10.1034/j.1600-0587.2001.240310.x
67. Cepak JD. Diet composition of coyotes in the Cuyahoga Valley National Park, Ohio. Ohio J Sci. 2004;104: 60–64.
68. Bollin-Booth HA. Diet analysis of the coyote (Canis latrans) in metropolitan park systems of northeast Ohio. Cleveland State University. 2007.
69. Rashleigh RM, Krebs RA, Van Keulen H. Population structure of coyote (Canis latrans) in the urban landscape of the Cleveland, Ohio area. Ohio J Sci. 2008;108: 54–59. Available: http://www.scopus.com/inward/record.url?eid=2-s2.0-69549111385&partnerID=40&md5=2ad9baddc16e784630e522421b0c7722
70. McClennen N, Wigglesworth RR, Anderson SH, Wachob DG. The effect of suburban and agricultural development on the activity patterns of coyotes (Canis latrans). Am Midl Nat. 2001;146: 27–36. doi: 10.1674/0003-0031(2001)146[0027:teosaa]2.0.co;2
71. Camenzind FJ. Behavioral ecology of coyotes on the National elk Refuge, Jackson, Wyoming. In: Bekoff M, editor. Coyotes: Biology, Behavior, and Management. New York, NY: Academic Press, Inc.; 1978. pp. 267–294.
72. Sacks BN, Jaeger MM, Neale JCC, McCullough DR. Territoriality and breeding status of coyotes relative to sheep predation. J ofWildlife Manag. 1999;63: 593–605.
73. Mitchell N, Strohbach MW, Pratt R, Finn WC, Strauss EG. Space use by resident and transient coyotes in an urban-rural landscape mosaic. Wildl Res. 2015;42: 461–469. doi: 10.1071/WR15020
74. Hidalgo-Mihart MG, Cantú-Salazar L, Carrillo-Percastegui SE, López-González CA. Daily activity patterns of coyotes (Canis latrans) in a tropical deciduous forest of western Mexico. Stud Neotrop Fauna Environ. 2009;44: 77–82. doi: 10.1080/01650520902941234
75. Harris S, Baker PJ, Soulsbury CD, Iossa G. Eurasian badgers (Meles meles). In: Gehrt SD, Riley SPD, Cypher BL, editors. Urban carnivores: ecology, conflict, and conservation. Baltimore, MD: The Johns Hopkins University Press; 2010. pp. 109–119.
76. Podgórski T, Baś G, Jędrzejewska B, Sönnichsen L, Śnieżko S, Jędrzejewski W, et al. Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: primeval forest and metropolitan area. J Mammal. 2013;94: 109–119. doi: 10.1644/12-MAMM-A-038.1
77. Adkins CA, Stott P. Home ranges and habitat associations of red foxes (Vulpes vulpes) in Suburban Toronto. Zool Soc London. 1998;244: 335–346.
78. Wallace BF. Coyote spatial and temporal use of recreational parklands as a function of human acivitywithin the Cuyahoga Valley, Ohio. The University of Akron. 2013.
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts