Induction of miR 21 impairs the anti-Leishmania response through inhibition of IL-12 in canine splenic leukocytes
Autoři:
Larissa Martins Melo aff001; Jaqueline Poleto Bragato aff001; Gabriela Lovizutto Venturin aff001; Gabriela Torres Rebech aff001; Sidnei Ferro Costa aff001; Leandro Encarnação Garcia aff002; Flavia Lombardi Lopes aff002; Flávia de Rezende Eugênio aff001; Paulo Sérgio Patto dos Santos aff001; Valéria Marçal Felix de Lima aff001
Působiště autorů:
Department of Animal Clinic, Surgery and Reproduction, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba,São Paulo, Brazil
aff001; Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
aff002
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0226192
Souhrn
Visceral Leishmaniasis is a chronic zoonosis and, if left untreated, can be fatal. Infected dogs have decreased cellular immunity (Th1) and develop a potent humoral response (Th2), which is not effective for elimination of the protozoan. Immune response can be modulated by microRNAs (miRNAs), however, characterization of miRNAs and their possible regulatory role in the spleen of infected dogs have not been done. We evaluated miRNA expression in splenic leukocytes (SL) from dogs naturally infected with Leishmania infantum and developing leishmaniasis (CanL; n = 8) compared to healthy dogs (n = 4). Microarray analysis showed increased expression of miR 21, miR 148a, miR 7 and miR 615, and downregulation of miR 150, miR 125a and miR 125b. Real-time PCR validated the differential expression of miR 21, miR 148a and miR 615. Further, decrease of miR 21 in SL, by means of transfection with a miR 21 inhibitor, increased the IL-12 cytokine and the T-bet/GATA-3 ratio, and decreased parasite load on SL of dogs with CanL. Taken together, these findings suggest that L. infantum infection alters splenic expression of miRNAs and that miR 21 interferes in the cellular immune response of L. infantum-infected dogs, placing this miRNA as a possible therapeutic target in CanL.
Klíčová slova:
Dogs – Immune response – Spleen – Transfection – MicroRNAs – Macrophages – Microarrays – Signaling networks
Zdroje
1. Moreno J, Alvar J. Canine leishmaniasis: Epidemiological risk and the experimental model. Trends Parasitol. 2002;18: 399–405. doi: 10.1016/s1471-4922(02)02347-4 12377257
2. Murray HW, Berman JD, Davies CR, Saravia NG. Advances in leishmaniasis. Lancet. 2005;366: 1561–1577. doi: 10.1016/S0140-6736(05)67629-5 16257344
3. Desjeux P. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis. 2004;27: 305–318. doi: 10.1016/j.cimid.2004.03.004 15225981
4. Mancianti F, Gramiccia M, Gradoni L, Pieri S. Studies on canine leishmaniasis control. 1. Evolution of infection of different clinical forms of canine leishmaniasis following antimonial treatment. Trans R Soc Trop Med Hyg. 1988;82: 566–7. Available: http://www.ncbi.nlm.nih.gov/pubmed/3076714 doi: 10.1016/0035-9203(88)90510-x 3076714
5. Badaró R, Jones TC, Lorenço R, Cerf BJ, Sampaio D, Carvalho EM, et al. A prospective study of visceral leishmaniasis in an endemic area of Brazil. J Infect Dis. 1986;154: 639–49. doi: 10.1093/infdis/154.4.639 3745974
6. Semião-Santos SJ, el Harith A, Ferreira E, Pires CA, Sousa C, Gusmão R. Evora district as a new focus for canine leishmaniasis in Portugal. Parasitol Res. 1995;81: 235–9. Available: http://www.ncbi.nlm.nih.gov/pubmed/7770430 doi: 10.1007/bf00937115 7770430
7. Strauss-Ayali D, Baneth G, Jaffe CL. Splenic immune responses during canine visceral leishmaniasis. Vet Res. 2007;38: 547–564. doi: 10.1051/vetres:2007015 17540157
8. Reis AB, Martins-Filho OA, Teixeira-Carvalho A, Carvalho MG, Mayrink W, França-Silva JC, et al. Parasite density and impaired biochemical/hematological status are associated with severe clinical aspects of canine visceral leishmaniasis. Res Vet Sci. 2006;81: 68–75. doi: 10.1016/j.rvsc.2005.09.011 16288789
9. Reis AB, Martins-Filho OA, Teixeira-Carvalho A, Giunchetti RC, Carneiro CM, Mayrink W, et al. Systemic and compartmentalized immune response in canine visceral leishmaniasis. Vet Immunol Immunopathol. 2009;128: 87–95. doi: 10.1016/j.vetimm.2008.10.307 19054576
10. Maia C, Campino L. Cytokine and Phenotypic Cell Profiles of Leishmania infantum Infection in the Dog. J Trop Med. 2012;2012: 1–7. doi: 10.1155/2012/541571 21845197
11. Pinelli E, Killick-Kendrick R, Wagenaar J, Bernadina W, del Real G, Ruitenberg J. Cellular and humoral immune responses in dogs experimentally and naturally infected with Leishmania infantum. Infect Immun. American Society for Microbiology; 1994;62: 229–35. Available: http://www.ncbi.nlm.nih.gov/pubmed/8262632
12. Alves CF, de Amorim IFG, Moura EP, Ribeiro RR, Alves CF, Michalick MS, et al. Expression of IFN-γ, TNF-α, IL-10 and TGF-β in lymph nodes associates with parasite load and clinical form of disease in dogs naturally infected with Leishmania (Leishmania) chagasi. Vet Immunol Immunopathol. 2009;128: 349–358. doi: 10.1016/j.vetimm.2008.11.020 19124159
13. Muxel SM, Laranjeira-Silva MF, Zampieri RA, Floeter-Winter LM. Leishmania (Leishmania) amazonensis induces macrophage miR-294 and miR-721 expression and modulates infection by targeting NOS2 and L-arginine metabolism. Sci Rep. 2017;7: 44141. doi: 10.1038/srep44141 28276497
14. Geraci NS, Tan JC, Mcdowell MA. Characterization of microRNA expression profiles in Leishmania-infected human phagocytes. Parasite Immunol. 2015;37: 43–51. doi: 10.1111/pim.12156 25376316
15. Singh AK, Pandey RK, Shaha C, Madhubala R. MicroRNA expression profiling of Leishmania donovani-infected host cells uncovers the regulatory role of MIR30A-3p in host autophagy. Autophagy. 2016; 1–15. doi: 10.1080/15548627.2015.1100356
16. Bragato JP, Melo LM, Venturin GL, Rebech GT, Garcia LE, Lopes FL, et al. Relationship of peripheral blood mononuclear cells miRNA expression and parasitic load in canine visceral leishmaniasis. Afrin F, editor. PLoS One. 2018;13: e0206876. doi: 10.1371/journal.pone.0206876 30517108
17. Tiwari N, Kumar V, Gedda MR, Singh AK, Singh VK, Gannavaram S, et al. Identification and Characterization of miRNAs in Response to Leishmania donovani Infection: Delineation of Their Roles in Macrophage Dysfunction. Front Microbiol. Frontiers Media SA; 2017;8: 314. doi: 10.3389/fmicb.2017.00314 28303124
18. Bragato JP, Melo LM, Venturin GL, Rebech GT, Garcia LE, Lopes FL, et al. Data on differentially expressed miRNAs in dogs infected with Leishmania infantum. Data Br. Elsevier; 2018;17: 218–225. doi: 10.1016/J.DIB.2018.01.007 29876389
19. Solano-Gallego L, Koutinas A, Miró G, Cardoso L, Pennisi MG, Ferrer L, et al. Directions for the diagnosis, clinical staging, treatment and prevention of canine leishmaniosis. Vet Parasitol. 2009;165: 1–18. doi: 10.1016/j.vetpar.2009.05.022 19559536
20. Lima VMF, Gonçalves ME, Ikeda FA, Luvizotto MCR, Feitosa MM. Anti-leishmania antibodies in cerebrospinal fluid from dogs with visceral leishmaniasis. Braz J Med Biol Res. 2003;36: 485–489. doi: 10.1590/s0100-879x2003000400010 12700826
21. Sanches L da C, Martini CC de, Nakamura AA, Santiago MEB, Dolabela de Lima B, Lima VMF de, et al. Natural canine infection by Leishmania infantum and Leishmania amazonensis and their implications for disease control. Rev Bras Parasitol Veterinária. Colégio Brasileiro de Parasitologia Veterinária; 2016;25: 465–469. doi: 10.1590/s1984-29612016071 27925065
22. Lima VMF de, Fattori KR, de Souza F, Eugênio FR, Santos PSP dos, Rozza DB, et al. Apoptosis in T lymphocytes from spleen tissue and peripheral blood of L. (L.) chagasi naturally infected dogs. Vet Parasitol. 2012;184: 147–153. doi: 10.1016/j.vetpar.2011.08.024 21899954
23. Ranasinghe S, Rogers ME, Hamilton JGC, Bates PA, Maingon RDC. A real-time PCR assay to estimate Leishmania chagasi load in its natural sand fly vector Lutzomyia longipalpis. Trans R Soc Trop Med Hyg. 2008;102: 875–882. doi: 10.1016/j.trstmh.2008.04.003 18501935
24. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles G, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14: 128. doi: 10.1186/1471-2105-14-128 23586463
25. Kuleshov M V., Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44: W90–W97. doi: 10.1093/nar/gkw377 27141961
26. Di Giorgio C, Ridoux O, Delmas F, Azas N, Gasquet M, Timon-David P. Flow cytometric detection of Leishmania parasites in human monocyte-derived macrophages: application to antileishmanial-drug testing. Antimicrob Agents Chemother. 2000;44: 3074–8. doi: 10.1128/aac.44.11.3074-3078.2000 11036025
27. Del Vecchio M, Bajetta E, Canova S, Lotze MT, Wesa A, Parmiani G, et al. Interleukin-12: Biological Properties and Clinical Application. Clin Cancer Res. 2007;13: 4677–4685. doi: 10.1158/1078-0432.CCR-07-0776 17699845
28. Diaz S, Fonseca IP da, Rodrigues A, Martins C, Cartaxeiro C, Silva MJ, et al. Canine leishmaniosis. Modulation of macrophage/lymphocyte interactions by L. infantum. Vet Parasitol. 2012;189: 137–144. doi: 10.1016/j.vetpar.2012.05.004 22698797
29. Kanhere A, Hertweck A, Bhatia U, Gökmen MR, Perucha E, Jackson I, et al. T-bet and GATA3 orchestrate Th1 and Th2 differentiation through lineage-specific targeting of distal regulatory elements. Nat Commun. Nature Publishing Group; 2012;3: 1268. doi: 10.1038/ncomms2260 23232398
30. Torrecilha RBP, Utsunomiya YT, Bosco AM, Almeida BF, Pereira PP, Narciso LG, et al. Correlations between peripheral parasite load and common clinical and laboratory alterations in dogs with visceral leishmaniasis. Prev Vet Med. 2016;132: 83–87. doi: 10.1016/j.prevetmed.2016.08.006 27664450
31. Silva SC, Silva DF, Almeida TC, Perasoli FB, da Silva ATP, da Silva GN, et al. Behavior of two Leishmania infantum strains-evaluation of susceptibility to antimonials and expression of microRNAs in experimentally infected J774 macrophages and in BALB/c mice. Parasitol Res. 2018;117: 2881–2893. doi: 10.1007/s00436-018-5979-3 29943317
32. Zhang J, Ying Z, Tang Z, Long L, Li K. MicroRNA-148a Promotes Myogenic Differentiation by Targeting the ROCK1 Gene. J Biol Chem. 2012;287: 21093–21101. doi: 10.1074/jbc.M111.330381 22547064
33. Silva KLO, Melo LM, Perosso J, Oliveira BB, Santos PSP dos, Eugênio F de R, et al. CD95 (FAS) and CD178 (FASL) induce the apoptosis of CD4+ and CD8+ cells isolated from the peripheral blood and spleen of dogs naturally infected with Leishmania spp. Vet Parasitol. 2013;197: 470–476. doi: 10.1016/j.vetpar.2013.07.012 23920055
34. Jiang A, Zhang S, Li Z, Liang R, Ren S, Li J, et al. miR-615-3p promotes the phagocytic capacity of splenic macrophages by targeting ligand-dependent nuclear receptor corepressor in cirrhosis-related portal hypertension. Exp Biol Med. 2011;236: 672–680. doi: 10.1258/ebm.2011.010349 21565892
35. Alexandre-Pires G, Pais D, Correia M, Pina JAE. Leishmaniosis—a report about the microvascular and cellular architecture of the infected spleen in Canis familiaris. Microsc Res Tech. 2006;69: 227–35. doi: 10.1002/jemt.20267 16586484
36. Carissimi C, Carucci N, Colombo T, Piconese S, Azzalin G, Cipolletta E, et al. miR-21 is a negative modulator of T-cell activation. Biochimie. 2014;107: 319–326. doi: 10.1016/j.biochi.2014.09.021 25304039
37. Mazloom H, Alizadeh S, Esfahani EN, Razi F, Meshkani R. Decreased expression of microRNA-21 is associated with increased cytokine production in peripheral blood mononuclear cells (PBMCs) of obese type 2 diabetic and non-diabetic subjects. Mol Cell Biochem. 2016;419: 11–17. doi: 10.1007/s11010-016-2743-9 27370645
38. Sudarshan M, Singh T, Singh B, Chakravarty J, Sundar S. Suppression of host PTEN gene expression for Leishmania donovani survival in Indian visceral leishmaniasis. Microbes Infect. 2016;18: 369–72. doi: 10.1016/j.micinf.2015.12.008 26774334
39. Kuroda S, Nishio M, Sasaki T, Horie Y, Kawahara K, Sasaki M, et al. Effective clearance of intracellular Leishmania major in vivo requires Pten in macrophages. Eur J Immunol. 2008;38: 1331–40. doi: 10.1002/eji.200737302 18398930
40. Liu L, Wang L, Zhao Y, Wang Y, Wang Z, Qiao Z. Testosterone attenuates p38 MAPK pathway during Leishmania donovani infection of macrophages. Parasitol Res. 2006;99: 189–193. doi: 10.1007/s00436-006-0168-1 16547729
41. Sheedy FJ. Turning 21: Induction of miR-21 as a Key Switch in the Inflammatory Response. Front Immunol. 2015;6. doi: 10.3389/fimmu.2015.00019 25688245
42. Lu TX, Hartner J, Lim E-J, Fabry V, Mingler MK, Cole ET, et al. MicroRNA-21 Limits In Vivo Immune Response-Mediated Activation of the IL-12/IFN- Pathway, Th1 Polarization, and the Severity of Delayed-Type Hypersensitivity. J Immunol. 2011;187: 3362–3373. doi: 10.4049/jimmunol.1101235 21849676
43. Lu TX, Munitz A, Rothenberg ME. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol. American Association of Immunologists; 2009;182: 4994–5002. doi: 10.4049/jimmunol.0803560 19342679
44. Seder RA, Gazzinelli R, Sher A, Paul WE. Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon gamma production and diminishes interleukin 4 inhibition of such priming. Proc Natl Acad Sci U S A. 1993;90: 10188–92. doi: 10.1073/pnas.90.21.10188 7901851
45. Engwerda CR, Murphy ML, Cotterell SEJ, Smelt SC, Kaye PM. Neutralization of IL-12 demonstrates the existence of discrete organ-specific phases in the control ofLeishmania donovani. Eur J Immunol. 1998;28: 669–680. doi: 10.1002/(SICI)1521-4141(199802)28:02<669::AID-IMMU669>3.0.CO;2-N 9521077
46. Murray HW, Montelibano C, Peterson R, Sypek JP. Interleukin‐12 Regulates the Response to Chemotherapy in Experimental Visceral Leishmaniasis. J Infect Dis. 2000;182: 1497–1502. doi: 10.1086/315890 11023473
47. Satoskar AR, Rodig S, Telford SR, Satoskar AA, Ghosh SK, von Lichtenberg F, et al. IL-12 gene-deficient C57BL/6 mice are susceptible to Leishmania donovani but have diminished hepatic immunopathology. Eur J Immunol. 2000;30: 834–9. doi: 10.1002/1521-4141(200003)30:3<834::AID-IMMU834>3.0.CO;2-9 10741399
48. Strauss-Ayali D, Baneth G, Shor S, Okano F, Jaffe CL. Interleukin-12 augments a Th1-type immune response manifested as lymphocyte proliferation and interferon gamma production in Leishmania infantum-infected dogs. Int J Parasitol. 2005;35: 63–73. doi: 10.1016/j.ijpara.2004.10.015 15619517
49. Santos-Gomes GM, Rosa R, Leandro C, Cortes S, Romão P, Silveira H. Cytokine expression during the outcome of canine experimental infection by Leishmania infantum. Vet Immunol Immunopathol. 2002;88: 21–30. Available: http://www.ncbi.nlm.nih.gov/pubmed/12088641 doi: 10.1016/s0165-2427(02)00134-4 12088641
50. Lage RS, Oliveira GC, Busek SU, Guerra LL, Giunchetti RC, Corrêa-Oliveira R, et al. Analysis of the cytokine profile in spleen cells from dogs naturally infected by Leishmania chagasi. Vet Immunol Immunopathol. 2007;115: 135–145. doi: 10.1016/j.vetimm.2006.10.001 17097741
51. Ylikoski E, Lund R, Kyläniemi M, Filén S, Kilpeläinen M, Savolainen J, et al. IL-12 up-regulates T-bet independently of IFN-γ in human CD4+ T cells. Eur J Immunol. 2005;35: 3297–3306. doi: 10.1002/eji.200526101 16220539
52. Pinelli E, Gonzalo RM, Boog CJ, Rutten VP, Gebhard D, del Real G, et al. Leishmania infantum-specific T cell lines derived from asymptomatic dogs that lyse infected macrophages in a major histocompatibility complex-restricted manner. Eur J Immunol. 1995;25: 1594–600. doi: 10.1002/eji.1830250619 7614987
53. Koutinas AF, Koutinas CK. Pathologic Mechanisms Underlying the Clinical Findings in Canine Leishmaniosis due to Leishmania infantum/chagasi. Vet Pathol. 2014;51: 527–538. doi: 10.1177/0300985814521248 24510947
54. Xi J, Huang Q, Wang L, Ma X, Deng Q, Kumar M, et al. miR-21 depletion in macrophages promotes tumoricidal polarization and enhances PD-1 immunotherapy. Oncogene. NIH Public Access; 2018;37: 3151–3165. doi: 10.1038/s41388-018-0178-3 29540832
55. Moreira PRR, Fernando FS, Montassier HJ, André MR, de Oliveira Vasconcelos R. Polarized M2 macrophages in dogs with visceral leishmaniasis. Vet Parasitol. 2016;226. doi: 10.1016/j.vetpar.2016.06.032 27514887
56. Mukherjee P, Sen PC, Ghose AC. Lymph node cells from BALB/c mice with chronic visceral leishmaniasis exhibiting cellular anergy and apoptosis: involvement of Ser/Thr phosphatase. Apoptosis. 2006;11: 2013–29. doi: 10.1007/s10495-006-0088-7 17013755
57. Wu Z, Lu H, Sheng J, Li L. Inductive microRNA-21 impairs anti-mycobacterial responses by targeting IL-12 and Bcl-2. FEBS Lett. 2012;586: 2459–2467. doi: 10.1016/j.febslet.2012.06.004 22710123
58. Cui B, Liu W, Wang X, Chen Y, Du Q, Zhao X, et al. Brucella Omp25 Upregulates miR-155, miR-21-5p, and miR-23b to Inhibit Interleukin-12 Production via Modulation of Programmed Death-1 Signaling in Human Monocyte/Macrophages. Front Immunol. 2017;8: 708. doi: 10.3389/fimmu.2017.00708 28694807
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts