Seasonal changes of the diurnal variation of precipitation in the upper Río Chagres basin, Panamá
Autoři:
Tosiyuki Nakaegawa aff001; Reinhardt Pinzon aff002; Jose Fabrega aff002; Johnny A. Cuevas aff004; Hector A. De Lima aff004; Eric Cordoba aff004; Keisuke Nakayama aff005; Josue Ivan Batista Lao aff006; Alcely Lau Melo aff007; Diego Arturo Gonzalez aff007; Shoji Kusunoki aff008
Působiště autorů:
Department of Applied Meteorology Research, Meteorological Research Institute, Tsukuba, Ibaraki, Japan
aff001; Centro de Investigaciones Hidráulicas e Hidrotécnicas, Universidad Tecnológica de Panamá, Panamá, Panamá
aff002; Sistema Nacional de Investigación, Secretaria Nacional de Ciencia y Tecnología e Innovación, Panamá, Panamá
aff003; Sección de Recursos Hídricos, Autoridad del Canal Panamá, Panamá, Panamá
aff004; Department of Civil Engineering, Kobe University, Kobe, Japan
aff005; Instituto Profesional y Técnico de Capira, Capira, Panamá
aff006; Hydrometeorological Departnment, Empresa de Transmisión Eléctrica S.A., Panamá, Panamá
aff007; Department of Earth System Modeling Research, Meteorological Research Institute, Tsukuba, Ibaraki, Japan
aff008
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0224662
Souhrn
This study elucidated the characteristics of climatological seasonal changes in the diurnal variations of precipitation at four ground stations in the upper Río Chagres basin in the Panama Canal watershed. The seasonal changes differed among the stations, although they are located within an area of only 414 km2. Precipitation peaks in the early afternoon at 1500 local standard time (LST) were observed at all the stations. At Chamon, monthly-mean hourly precipitation at every hour exceeded 0.3 mm h–1 throughout November and December. The occurrence of morning precipitation in January and March distinguished the seasonal precipitation pattern at Esperanza from the pattern at the other stations. Analyses of the seasonal changes in the diurnal variation with pattern correlations and rotational empirical orthogonal functions grouped the stations into two pairs: no morning peak at Chico and Río Piedras in the downstream basin and morning peak at Chamon and Esperanza in the upstream basin.
Klíčová slova:
Seasons – Meteorology – Rain – Climatology – Wind – El Niño-Southern Oscillation – Panama – Diurnal variations
Zdroje
1. Garreaud R, Wallace JM. The diurnal march of convective cloudiness over the Americas. Mon Wea Rev. 1997;125:3157–3171. doi: 10.1175/1520-0493(1997)125<3157:TDMOCC>2.0.CO;2
2. Anderson BT, Kanamaru H. The diurnal cycle of the summertime atmospheric hydrologic cycle over the southwestern United States. J Hydrometeorol. 2005;6:219–228. doi: 10.1175/JHM413.1
3. Lundquist JD, Cayan DR. Seasonal and spatial patterns in diurnal cycles in streamflow in the western United States. J Hydrometeorol. 2002;3: 591–603. doi: 10.1175/1525-7541(2002)003<0591:SASPID>2.0.CO;2
4. Ibrahimi MK, Miyazaki T, Nishimura T. A high measurement frequency based assessment of shallow groundwater fluctuations in Metouia Oasis, South Tunisia. Hydrol Res Lett. 2010;4:75–79.
5. Chikita K, Okumura Y. Dynamics of turbidity currents measured in Katsurazawa Reservoir, Hokkaido, Japan. J Hydrol. 1990;117:323–338. doi: 10.1016/0022-1694(90)90099-J
6. Makita N, Kosugi Y, Sakabe A, Kanazawa A, Ohkubo S, Tani M. Seasonal and diurnal patterns of soil respiration in an evergreen coniferous forest: Evidence from six years of observation with automatic chambers. PloS ONE, e0192622. doi: 10.1371/journal.pone.0192622 29432465
7. Hastenrath S. On modes of tropical circulation and climate anomalies. J Atmos Sci. 1978;35:2222–2231.
8. Nakaegawa T, Kitoh A, Murakami H, Kusunoki S. Annual maximum 5-day rainfall total and maximum number of consecutive dry days over Central America and the Caribbean in the late 21st century projected by an atmospheric general circulation model with three different horizontal resolutions. Theorcal Appl Climatol. 2014b;16:155–168. doi: 10.1007/s00704-013-0934-9
9. UNESCO, 2008. Balance hídrico superficial de Panamá, período 1971–2002. Documento Técnicos del PHI-LAC 9, 133pp. Available from: http://unesdoc.unesco.org/images/0015/001591/159103s.pdf [Accessed 26 September 2019]
10. Nakaegawa T, Arakawa O, Kamiguchi K. Investigation of climatological onset and withdrawal of the rainy season in Panama based on a daily gridded precipitation dataset with a high horizontal resolution. J Clim. 2015;28:2745–2763. doi: https://doi.org/10.1175/JCLI-D-14-00243.1
11. Mitchell T, Wallace J. The Annual Cycle in Equatorial Convection and Sea Surface Temperature. J Clim. 1992;5(10):1140–1156. doi: 10.1175/1520-0442(1993)006<1678:C>2.0.CO;2
12. Durán-Quesada AM, Revoita M, Gimeno L. Precipitation in tropical America and the associated sources of moisture: a short review, Hydrol Sci J. 2012;57(4):612–624, doi: 10.1080/02626667.2012.673723
13. Leigh EG, Windsor DM, Rand AS, Foster RB. The impact of the “El Niño” drought of 1982–83 on a Panamanian semi deciduous forest. Elsevier Oceanogr seri. 1990;52:473–486.
14. Hastenrath S. The intertropical convergence zone of the eastern Pacific revisited. Int J Climatol. 2002;22:347–356. doi: 10.1002/joc.739
15. Schultz DM, Bracken WE, Bosart LF. Planetary- and synoptic-scale signatures associated with Central American cold surges. Mon Wea Rev. 1998;126:5–27. doi: 10.1175/1520-0493(1998)126<0005:PASSSA>2.0.CO;2
16. Poveta G, Mesa OJ, Salazar LF, Arias PA, Moreno HA, Vieira SC, et al. The diurnal cycle of precipitation in the Tropical Andes of Colombia. Mon Wea Rev. 2005;133:228–240. doi: 10.1175/MWR-2853.1
17. Amador JA, Saenz F. Diurnal cycle on the Caribbean slope of Costa Rica: An observational and numerical study. A21B-06. In Meeting of the Americas, Cancun, Mexico. 14–17 May 2013. Available from: http://moa.agu.org/2013/eposters/eposter/a21b-06/ [Accessed 26 September 2019].
18. Oki T, Musiake K. Seasonal change of the diurnal cycle of precipitation over Japan and Malaysia. J Appl Meteorol Climatol. 1994;33:1445–1463. doi: 10.1175/1520-0450(1994)033<1445:SCOTDC>2.0.CO;2
19. Rapp AD, Peterson AG, Frauenfeld OW, Quiring SM, Roark EB. 2014. Climatology of storm characteristics in Costa Rica using the TRMM Precipitation Radar. J Hydrometeorol. 2014;15:2615–2633. doi: 10.1175/JHM-D-13-0174.1
20. Mapes BE, Warner TT, Xu M, Negri AJ. Diurnal patterns of rainfall in Northwestern South America. Part I: Observations and Context. Mon Wea Rev. 2003;131:799–812. doi: 10.1175/1520-0493(2003)131<0799:DPORIN>2.0.CO;2
21. Biasutti M, Yuter SE, Burleyson CD, Sobel AH. Very high resolution rainfall patterns measured by TRMM precipitation radar: seasonal and diurnal cycles. Clim Dyn. 2012;39:239–258.
22. Negri AJ, Xu L, Adler RF. A TRMM-calibrated infrared rainfall algorithm applied over Brazil. J Geophy Res. 2002;107:8048. doi: 10.1029/2000JD000265
23. Sorooshian S, Gao X, Hsu K, Maddox RA, Hong Y, Gupta HV, Imam B. Diurnal variability of tropical rainfall retrieved from combined GOES and TRMM satellite information. J Clim. 2002;15:983–1001.
24. Kikuchi K, Wang B. Diurnal precipitation regimes in the global tropics. J Clim. 2008;21:2680–2696. doi: 10.1175/2007JCLI2051.1
25. Jiang Q. 2003. Moist dynamics and orographic precipitation. Tellus A: Dyn Meteorol Oceanogr. 55.4: 301–316.
26. Qian JH, Robertson AW, Moron V. 2010. Interactions among ENSO, the monsoon, and diurnal cycle in rainfall variability over Java, Indonesia. J Atmos Sci. 67: 3509–3524. doi: 10.1175/2010JAS3348.1
27. Perdigón-Morales J, Romero-Centeno R, Barrett BS, Ordoñez P. Intraseasonal variability of summer precipitation in Mexico: MJO influence on the midsummer drought. J Clim, 2019: doi: 10.1175/JCLI-D-18-0437.1
28. Harmon RS. 2005. An Introduction to the Panama Canal Watershed. In: Harmon R. S. ed. The Río Chagres, Panama, Water Science and Technology Library, Springer. 2005;52:19–28.
29. Knox RG, Ogden FL, Dinku T. 2005. Using TRMM to Explore Rainfall Variability in the Upper Río Chagres Catchment, Panama. In: Harmon R. S., ed. The Río Chagres, Panama, Water Science and Technology Library, Springer. 2005;52:211–226.
30. Hsu HH, Lee MY. Topographic effects on the eastward propagation and initiation of the Madden–Julian oscillation. J Clim, 2005;18:795–809. doi: 10.1175/JCLI-3292.1
31. Bhatt BC, Nakamura K. A climatological‐dynamical analysis associated with precipitation around the southern part of the Himalayas. J Geoph. Res.: Atmos. 2006;111:D02115. doi: 10.1029/2005JD006197
32. Zhou L, Wang Y. Tropical Rainfall Measuring Mission observation and regional model study of precipitation diurnal cycle in the New Guinean region. J Geophy Res. 2006;111:D17104. doi: 10.1029/2006JD007243
33. Fábrega J, Nakaegawa T, Pinzón R, Nakayama K, Arakawa O. SOUSEI Theme-C modeling group. Hydroclimate projections for Panama in the 21st Century. Hydrol Res Lett. 2013;7:23–29. doi: 10.3178/hrl.7.23
34. Göktürk OM, Bozkurt D, Şen Ö.L, Karaca M. Quality control and homogeneity of Turkish precipitation data. Hydrol Proces. 2008: 22: 3210–3218.
35. Wang XL, Feng Y. 2013. RHtestsV4 User Manual. Climate Research Division, Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment Canada, Toronto, Ontario, Canada. Available from: http://etccdi.pacificclimate.org/RHtest/RHtestsV4_UserManual_10Dec2014.pdf [Accessed 26 September 2019]
36. Wang XL, 2008a. Accounting for autocorrelation in detecting mean-shifts in climate data series using the penalized maximal t or F test. J Appl Meteor Climatol. 47, 2423–2444.
37. Wang XL., 2008b. Penalized maximal F-test for detecting undocumented mean-shifts without trend-change. J Atmos Ocea Tech, 25 (No. 3), 368–384. doi: 10.1175/2007/JTECHA982.1
38. Wang B, LinHo. Rainy season of the Asian–Pacific summer monsoon. J Clim, 2002: 15, 386–398, doi: 10.1175/1520-0442(2002)015,0386:RSOTAP.2.0.CO;2
39. Alfaro EJ. Some characteristics of the annual precipitation cycle in Central America and their relationships with its surrounding tropical oceans. Tóp Meteor Oceanogr,2002:9,88–103
40. IMD, 1943: Climatological atlas for airmen. India Meteorological Department, 100 pp.
41. Hersbach H, Dee D. ERA5 reanalysis is in production. ECMWF newsletter 2016: 147.7.
42. Ishizaki Y, Nakaegawa T, Takayabu I. Validation of precipitation over Japan during 1985–2004 simulated by three regional climate models and two multi-model ensemble means. Clim Dyn. 2012;39:185–206. doi: 10.1007/s00382-012-1304-5
43. Magaña V, Amador JA, Medina S. The mid-summer drought over Mexico and Central America. J Clim. 1999;12:1577–1588. doi: 10.1175/1520-0442(1999)012<1577:TMDOMA>2.0.CO;2
44. Perdigón-Morales J, Romero-Centeno R, Ordoñez P, Barrett BS. 2018. The midsummer drought in Mexico: perspectives on duration and intensity from the CHIRPS precipitation database. Int J Climatol. 38 (5): 2174–2186.
45. Wang J, Shamir E, Georgakakos KP. Study of extreme precipitation over the Panama Canal Watershed. Hydrologic Research Center, Tech. Rep. 2007;6:158pp. Available from: https://www.hrcwater.org/hrc-technical-reports/ [Accessed 26 September 2019]
46. Smith R.B., Schafer P., Kirshbaum D.J. and Regina E., 2009. Orographic precipitation in the tropics: Experiments in Dominica. JAtmos Sci, 66(6), pp.1698–1716.
47. Nakaegawa T, Kitoh A, Ishizaki Y, Kusunoki S, Murakami H. Caribbean low-level jets and accompanying moisture fluxes in a global warming climate projected with CMIP3 multi-model ensemble and fine-mesh atmospheric general circulation models. Int JClimatology. 2014a; 34:964–977. doi: 10.1002/joc.3733
48. Kobayashi S, et al. The JRA-55 Reanalysis: General specifications and basic characteristics. J Meteorol SocJp. 2015;93:5–48. doi: 10.2151/jmsj.2015-001
49. Cook KH, Vizy EK, 2010. Hydrodynamics of the Caribbean low-level jet and its relationship to precipitation. J Clim. 23(6), pp.1477–1494. doi: 10.1175/2009JCLI3210.1.649
50. Lachniet MS, et al. A 1500‐year El Niño/Southern Oscillation and rainfall history for the isthmus of Panama from speleothem calcite. J Geophyp-sical Res: Atmos, 2004, 109.D20. doi: 10.1029/2004JD004694
51. Durán-Quesada AM, Gimeno L, Amador J. Role of moisture transport for Central American precipitation. Earth System Dynamics, 2017:8(1): 147–161.
52. Reynolds JE, et al. Definitions of climatological and discharge days: do they matter in hydrological modelling?, Hydrol Sci Journal, 2018;63(5):836–844. doi: 10.1080/02626667.2018.1451646 doi: 10.5194/esd-8-147-2017
53. Pinzon R, Hibino K., Takayabu I, Nakaegawa T. Virtual experiencing future climate changes in Central America with MRI-AGCM: climate analogues study. Hydrolal ResLetters. 2017;11:106–113. doi: 10.3178/hrl.11.107
54. Nakaegawa T, Kitoh A, Kusunoki S, Murakami H, Arakawa O. Hydroclimate change over Central America and the Caribbean in a global warming climate projected with 20-km and 60-km mesh MRI atmospheric general circulation models Pap Meteorol Geoph. 2014:65: 15–33.
55. Kusunoki S, Nakaegawa T, Pinzon R, Sanchez J, Fabrega JR. Future precipitation changes over Panama projected with the atmospheric global model MRI-AGCM3.2. Clim Dyn. 2019: 11–16.
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts