Circadian misalignment alters insulin sensitivity during the light phase and shifts glucose tolerance rhythms in female mice
Autoři:
Li-Xin Zhong aff001; Xiao-Na Li aff001; Guang-Yu Yang aff002; Xia Zhang aff001; Wen-Xue Li aff002; Qian-Qian Zhang aff001; Huan-Xin Pan aff001; Hui-Hong Zhang aff003; Meng-Ya Zhou aff003; Yi-Ding Wang aff003; Wei-Wei Zhang aff002; Qian-Sheng Hu aff001; Wei Zhu aff002; Bo Zhang aff003
Působiště autorů:
Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
aff001; Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
aff002; Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
aff003
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0225813
Souhrn
Shift work and jet lag, characterized by circadian misalignment, can disrupt several physiological activities, but whether they affect the rhythm of glucose uptake and insulin sensitivity remain unclear. In the present study, female C57BL/6J mice were maintained for four weeks under the condition of 8-hour phase advance and delay every 3–4 days to mimic shift work. Intraperitoneal glucose tolerance test (IPGTT) and intraperitoneal insulin tolerance test (IPITT) were performed repeatedly at Zeitgeber time (ZT) 0, ZT6, ZT12, and ZT18. Glucose-stimulated insulin secretion (GSIS) test was performed at ZT6. We found that the average level of daily glucose tolerance did not decrease but the phase of glucose tolerance advanced by 2.27 hours and the amplitude attenuated by 20.4% in shift work mice. At ZT6, IPITT showed blood glucose at 30 min after insulin injection decreased faster in shift work mice (−3.50±0.74mmol/L, −61.58±7.89%) than that in control mice (−2.11±1.10mmol/L, −33.72±17.24%), but IPGTT and GSIS test showed no significant difference between the two groups. Food intake monitor showed that the feeding time of shift work mice continued to advance. Restricting feed to a fixed 12-hour period alleviated the increase of insulin sensitivity induced by shift-work. We also observed that an increase of blood glucose and liver glycogen at ZT0, as well as a phase advance of liver clock genes and some glucose metabolism-related genes such as forkhead box O1 (Foxo1) and peroxisome proliferator activated receptor alpha (Pparα) in shift work mice. Our results showed that light change-simulated shift work altered insulin sensitivity during the light phase and shifted glucose tolerance rhythms in female mice, suggesting a causal association between long-term shift work and type 2 diabetes.
Klíčová slova:
Insulin – Glucose metabolism – Blood plasma – Glucose – Circadian rhythms – Blood sugar – Glycogens – Glucose tolerance
Zdroje
1. Kalsbeek A, la Fleur S, Fliers E. Circadian control of glucose metabolism. Molecular metabolism. 2014;3(4):372–83. Epub 2014/06/20. doi: 10.1016/j.molmet.2014.03.002 24944897; PubMed Central PMCID: PMC4060304.
2. La Fleur SE. Daily rhythms in glucose metabolism: suprachiasmatic nucleus output to peripheral tissue. J Neuroendocrinol. 2003;15(3):315–22. Epub 2003/02/18. doi: 10.1046/j.1365-2826.2003.01019.x 12588521.
3. La Fleur SE, Kalsbeek A, Wortel J, Fekkes ML, Buijs RM. A daily rhythm in glucose tolerance: a role for the suprachiasmatic nucleus. Diabetes. 2001;50(6):1237–43. Epub 2001/05/26. doi: 10.2337/diabetes.50.6.1237 11375322.
4. Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB, et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2004;2(11):e377. Epub 2004/11/04. doi: 10.1371/journal.pbio.0020377 15523558; PubMed Central PMCID: PMC524471.
5. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 2005;308(5724):1043–5. Epub 2005/04/23. doi: 10.1126/science.1108750 15845877; PubMed Central PMCID: PMC3764501.
6. Shi SQ, Ansari TS, McGuinness OP, Wasserman DH, Johnson CH. Circadian disruption leads to insulin resistance and obesity. Curr Biol. 2013;23(5):372–81. Epub 2013/02/26. doi: 10.1016/j.cub.2013.01.048 23434278; PubMed Central PMCID: PMC3595381.
7. Lee J, Kim MS, Li R, Liu VY, Fu L, Moore DD, et al. Loss of Bmal1 leads to uncoupling and impaired glucose-stimulated insulin secretion in beta-cells. Islets. 2011;3(6):381–8. Epub 2011/11/03. doi: 10.4161/isl.3.6.18157 22045262; PubMed Central PMCID: PMC3329519.
8. Lamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci U S A. 2008;105(39):15172–7. Epub 2008/09/10. doi: 10.1073/pnas.0806717105 18779586; PubMed Central PMCID: PMC2532700.
9. Harfmann BD, Schroder EA, Kachman MT, Hodge BA, Zhang X, Esser KA. Muscle-specific loss of Bmal1 leads to disrupted tissue glucose metabolism and systemic glucose homeostasis. Skelet Muscle. 2016;6:12. Epub 2016/08/04. doi: 10.1186/s13395-016-0082-x 27486508; PubMed Central PMCID: PMC4969979.
10. Dyar KA, Ciciliot S, Wright LE, Bienso RS, Tagliazucchi GM, Patel VR, et al. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Mol Metab. 2014;3(1):29–41. Epub 2014/02/26. doi: 10.1016/j.molmet.2013.10.005 24567902; PubMed Central PMCID: PMC3929910.
11. Sadacca LA, Lamia KA, deLemos AS, Blum B, Weitz CJ. An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice. Diabetologia. 2011;54(1):120–4. Epub 2010/10/05. doi: 10.1007/s00125-010-1920-8 20890745; PubMed Central PMCID: PMC2995870.
12. Opperhuizen AL, van Kerkhof LW, Proper KI, Rodenburg W, Kalsbeek A. Rodent models to study the metabolic effects of shiftwork in humans. Front Pharmacol. 2015;6:50. Epub 2015/04/09. doi: 10.3389/fphar.2015.00050 25852554; PubMed Central PMCID: PMC4371697.
13. Tsai LL, Tsai YC, Hwang K, Huang YW, Tzeng JE. Repeated light-dark shifts speed up body weight gain in male F344 rats. Am J Physiol Endocrinol Metab. 2005;289(2):E212–7. Epub 2005/03/03. doi: 10.1152/ajpendo.00603.2004 15741238.
14. Figueiro MG, Radetsky L, Plitnick B, Rea MS. Glucose tolerance in mice exposed to light-dark stimulus patterns mirroring dayshift and rotating shift schedules. Scientific reports. 2017;7:40661. Epub 2017/01/13. doi: 10.1038/srep40661 28079162; PubMed Central PMCID: PMC5227691.
15. Grosbellet E, Zahn S, Arrive M, Dumont S, Gourmelen S, Pevet P, et al. Circadian desynchronization triggers premature cellular aging in a diurnal rodent. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2015;29(12):4794–803. Epub 2015/08/12. doi: 10.1096/fj.14-266817 26260033.
16. Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC, et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 2014;159(3):514–29. Epub 2014/11/25. doi: 10.1016/j.cell.2014.09.048 25417104.
17. Bartol-Munier I, Gourmelen S, Pevet P, Challet E. Combined effects of high-fat feeding and circadian desynchronization. Int J Obes (Lond). 2006;30(1):60–7. Epub 2005/09/15. doi: 10.1038/sj.ijo.0803048 16158090.
18. Gale JE, Cox HI, Qian J, Block GD, Colwell CS, Matveyenko AV. Disruption of circadian rhythms accelerates development of diabetes through pancreatic beta-cell loss and dysfunction. Journal of biological rhythms. 2011;26(5):423–33. Epub 2011/09/17. doi: 10.1177/0748730411416341 21921296; PubMed Central PMCID: PMC3359760.
19. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9. Epub 1985/07/01. doi: 10.1007/bf00280883 3899825.
20. Barclay JL, Husse J, Bode B, Naujokat N, Meyer-Kovac J, Schmid SM, et al. Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork. PLoS One. 2012;7(5):e37150. Epub 2012/05/26. doi: 10.1371/journal.pone.0037150 22629359; PubMed Central PMCID: PMC3357388.
21. Chaix A, Zarrinpar A, Miu P, Panda S. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell metabolism. 2014;20(6):991–1005. Epub 2014/12/04. doi: 10.1016/j.cmet.2014.11.001 25470547; PubMed Central PMCID: PMC4255155.
22. Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell metabolism. 2012;15(6):848–60. Epub 2012/05/23. doi: 10.1016/j.cmet.2012.04.019 22608008; PubMed Central PMCID: PMC3491655.
23. Shamsi NA, Salkeld MD, Rattanatray L, Voultsios A, Varcoe TJ, Boden MJ, et al. Metabolic consequences of timed feeding in mice. Physiol Behav. 2014;128:188–201. Epub 2014/02/19. doi: 10.1016/j.physbeh.2014.02.021 24534172.
24. Fonken LK, Workman JL, Walton JC, Weil ZM, Morris JS, Haim A, et al. Light at night increases body mass by shifting the time of food intake. Proc Natl Acad Sci U S A. 2010;107(43):18664–9. Epub 2010/10/13. doi: 10.1073/pnas.1008734107 20937863; PubMed Central PMCID: PMC2972983.
25. Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW. Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring, Md). 2009;17(11):2100–2. Epub 2009/09/05. doi: 10.1038/oby.2009.264 19730426; PubMed Central PMCID: PMC3499064.
26. Salgado-Delgado R, Angeles-Castellanos M, Saderi N, Buijs RM, Escobar C. Food intake during the normal activity phase prevents obesity and circadian desynchrony in a rat model of night work. Endocrinology. 2010;151(3):1019–29. Epub 2010/01/19. doi: 10.1210/en.2009-0864 20080873.
27. Oike H, Sakurai M, Ippoushi K, Kobori M. Time-fixed feeding prevents obesity induced by chronic advances of light/dark cycles in mouse models of jet-lag/shift work. Biochem Biophys Res Commun. 2015;465(3):556–61. Epub 2015/08/25. doi: 10.1016/j.bbrc.2015.08.059 26297949.
28. Barclay JL, Jana H, Brid B, Nadine N, Judit M-K, M. SS, et al. Circadian Desynchrony Promotes Metabolic Disruption in a Mouse Model of Shiftwork. PLoS One. 2012;7(5):e37150. doi: 10.1371/journal.pone.0037150 22629359
29. Casiraghi LP, Alzamendi A, Giovambattista A, Chiesa JJ, Golombek DA. Effects of chronic forced circadian desynchronization on body weight and metabolism in male mice. Physiological reports. 2016;4(8). Epub 2016/04/30. doi: 10.14814/phy2.12743 27125665; PubMed Central PMCID: PMC4848717.
30. Gan Y, Yang C, Tong X, Sun H, Cong Y, Yin X, et al. Shift work and diabetes mellitus: a meta-analysis of observational studies. Occup Environ Med. 2015;72(1):72–8. Epub 2014/07/18. doi: 10.1136/oemed-2014-102150 25030030.
31. Vimalananda VG, Palmer JR, Gerlovin H, Wise LA, Rosenzweig JL, Rosenberg L, et al. Night-shift work and incident diabetes among African-American women. Diabetologia. 2015;58(4):699–706. Epub 2015/01/15. doi: 10.1007/s00125-014-3480-9 25586362; PubMed Central PMCID: PMC4461435.
32. Hansen AB, Stayner L, Hansen J, Andersen ZJ. Night shift work and incidence of diabetes in the Danish Nurse Cohort. Occupational and environmental medicine. 2016;73(4):262–8. Epub 2016/02/19. doi: 10.1136/oemed-2015-103342 26889020.
33. Vetter C, Dashti HS, Lane JM, Anderson SG. Night Shift Work, Genetic Risk, and Type 2 Diabetes in the UK Biobank. 2018;41(4):762–9. doi: 10.2337/dc17-1933 29440150.
34. Kivimaki M, Batty GD, Hublin C. Shift work as a risk factor for future type 2 diabetes: evidence, mechanisms, implications, and future research directions. PLoS Med. 2011;8(12):e1001138. Epub 2011/12/14. doi: 10.1371/journal.pmed.1001138 22162952; PubMed Central PMCID: PMC3232187.
35. Morris CJ, Yang JN, Garcia JI, Myers S, Bozzi I, Wang W, et al. Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(17):E2225–34. Epub 2015/04/15. doi: 10.1073/pnas.1418955112 25870289; PubMed Central PMCID: PMC4418873.
36. Morris CJ, Purvis TE, Mistretta J, Scheer FA. Effects of the Internal Circadian System and Circadian Misalignment on Glucose Tolerance in Chronic Shift Workers. The Journal of clinical endocrinology and metabolism. 2016;101(3):1066–74. Epub 2016/01/16. doi: 10.1210/jc.2015-3924 26771705; PubMed Central PMCID: PMC4803172.
37. Zhu L, Zou F, Yang Y, Xu P, Saito K, Othrell Hinton A Jr., et al. Estrogens prevent metabolic dysfunctions induced by circadian disruptions in female mice. Endocrinology. 2015;156(6):2114–23. Epub 2015/03/26. doi: 10.1210/en.2014-1922 25807042; PubMed Central PMCID: PMC4430614.
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Masturbační chování žen v ČR − dotazníková studie
- Nejasný stín na plicích – kazuistika
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Somatizace stresu – typické projevy a možnosti řešení
Najčítanejšie v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts