Development of refractive error in children treated for retinopathy of prematurity with anti-vascular endothelial growth factor (anti-VEGF) agents: A meta-analysis and systematic review
Autoři:
Qing-Qing Tan aff001; Stephen P. Christiansen aff004; Jingyun Wang aff003
Působiště autorů:
Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
aff001; Department of Ophthalmology and Optometry, North Sichuan Medical College, Nanchong, Sichuan, China
aff002; Salus University Pennsylvania College of Optometry, Elkins Park, Pennsylvania, United States of America
aff003; Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States of America
aff004; Department of Pediatrics, Boston University School of Medicine, Boston, Massachusetts, United States of America
aff005; Boston Medical Center, Boston, Massachusetts, United States of America
aff006
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0225643
Souhrn
Objective
To investigate refractive error development in preterm children with severe retinopathy of prematurity (ROP) treated with anti-vascular endothelial growth factor (anti-VEGF) agents and laser photocoagulation.
Methods
Selection criteria were comparative studies that compared the refractive errors in children, birthweights ≤1500 grams and gestational ages ≤30 weeks, and treatments for Type I ROP with intravitreal bevacizumab (IVB) versus laser photocoagulation. Studies were identified using PubMed, Google Scholar, and published reviews. Meta-analyses were performed on the post-treatment outcomes of spherical equivalent (SEQ), cylindrical power, and prevalence of high myopia. Longitudinal development of refractive error in IVB, or in laser-treated children, or in normal full-term children was visually summarized.
Results
Two randomized controlled trials and 5 non-randomized studies, including a total of 272 eyes treated by IVB and 247 eyes treated by laser, were included in this study. Compared with laser-treated children, IVB-treated children have less myopic refractive error (P<0.001), lower prevalence of high myopia (P<0.05), and less astigmatism (P = 0.02).
Conclusions
Treatment with IVB is associated with less myopia and astigmatism than laser treatment for infants with severe ROP. Given the complexity of ROP and the variability of dosing, our review supports close monitoring of refractive error outcomes in children treated with IVB.
Klíčová slova:
Birth weight – Eyes – Lasers – Infants – Myopia – Retinopathy of prematurity
Zdroje
1. Connolly BP, Ng EY, McNamara JA, Regillo CD, Vander JF, Tasman W. A comparison of laser photocoagulation with cryotherapy for threshold retinopathy of prematurity at 10 years: part 2. Refractive outcome. Ophthalmology. 2002;109(5):936–941. doi: 10.1016/s0161-6420(01)01015-6 11986101
2. Quinn GE, Dobson V, Davitt BV, Hardy RJ, Tung B, Pedroza C, et al. Progression of myopia and high myopia in the early treatment for retinopathy of prematurity study: findings to 3 years of age. Ophthalmology. 2008;115(6):1058–1064.e1051. doi: 10.1016/j.ophtha.2007.07.028 18423871
3. Quinn GE, Dobson V, Kivlin J, Kaufman LM, Repka MX, Reynolds JD, et al. Prevalence of myopia between 3 months and 5 1/2 years in preterm infants with and without retinopathy of prematurity. Cryotherapy for Retinopathy of Prematurity Cooperative Group. Ophthalmology. 1998;105(7):1292–1300. doi: 10.1016/s0161-6420(98)97036-1 9663236
4. Chen TC, Tsai TH, Shih YF, Yeh PT, Yang CH, Hu FC, et al. Long-term evaluation of refractive status and optical components in eyes of children born prematurely. Invest Ophthalmol Vis Sci. 2010;51(12):6140–6148. doi: 10.1167/iovs.10-5234 20688740
5. Wang J, Ren X, Shen L, Yanni SE, Leffler JN, Birch EE. Development of refractive error in individual children with regressed retinopathy of prematurity. Invest Ophthalmol Vis Sci. 2013;54(9):6018–6024. doi: 10.1167/iovs.13-11765 23920368
6. Rosenfeld PJ. Intravitreal avastin: the low cost alternative to lucentis? Am J Ophthalmol. 2006;142(1):141–143. doi: 10.1016/j.ajo.2006.03.036 16815262
7. Geloneck MM, Chuang AZ, Clark WL, Hunt MG, Norman AA, Packwood EA, et al. Refractive outcomes following bevacizumab monotherapy compared with conventional laser treatment: a randomized clinical trial. JAMA Ophthalmol. 2014;132(11):1327–1333. doi: 10.1001/jamaophthalmol.2014.2772 25103848
8. Harder BC, Schlichtenbrede FC, von Baltz S, Jendritza W, Jendritza B, Jonas JB. Intravitreal bevacizumab for retinopathy of prematurity: refractive error results. Am J Ophthalmol. 2013;155(6):1119–1124.e1111. doi: 10.1016/j.ajo.2013.01.014 23490192
9. Harder BC, von Baltz S, Schlichtenbrede FC, Jonas JB. Early refractive outcome after intravitreous bevacizumab for retinopathy of prematurity. Arch Ophthalmol. 2012;130(6):800–801. doi: 10.1001/archophthalmol.2012.1 22801850
10. Hwang CK, Hubbard GB, Hutchinson AK, Lambert SR. Outcomes after Intravitreal Bevacizumab versus Laser Photocoagulation for Retinopathy of Prematurity: A 5-Year Retrospective Analysis. Ophthalmology. 2015;122(5):1008–1015. doi: 10.1016/j.ophtha.2014.12.017 25687024
11. Isaac M, Mireskandari K, Tehrani N. Treatment of type 1 retinopathy of prematurity with bevacizumab versus laser. J AAPOS. 2015;19(2):140–144. doi: 10.1016/j.jaapos.2015.01.009 25892041
12. Chen YH, Chen SN, Lien RI, Shih CP, Chao AN, Chen KJ, et al. Refractive errors after the use of bevacizumab for the treatment of retinopathy of prematurity: 2-year outcomes. Eye (Lond). 2014;28(9):1080–1086; quiz 1087. doi: 10.1038/eye.2014.172 25104736
13. Chen SN, Lian I, Hwang YC, Chen YH, Chang YC, Lee KH, et al. Intravitreal anti-vascular endothelial growth factor treatment for retinopathy of prematurity: comparison between Ranibizumab and Bevacizumab. Retina. 2015;35(4):667–674. doi: 10.1097/IAE.0000000000000380 25462435
14. Kuo HK, Sun IT, Chung MY, Chen YH. Refractive Error in Patients with Retinopathy of Prematurity after Laser Photocoagulation or Bevacizumab Monotherapy. Ophthalmologica. 2015;234(4):211–217. doi: 10.1159/000439182 26393895
15. Wu WC, Kuo HK, Yeh PT, Yang CM, Lai CC, Chen SN. An updated study of the use of bevacizumab in the treatment of patients with prethreshold retinopathy of prematurity in taiwan. Am J Ophthalmol. 2013;155(1):150–158.e151. doi: 10.1016/j.ajo.2012.06.010 22967867
16. Martinez-Castellanos MA, Schwartz S, Hernandez-Rojas ML, Kon-Jara VA, Garcia-Aguirre G, Guerrero-Naranjo JL, et al. Long-term effect of antiangiogenic therapy for retinopathy of prematurity up to 5 years of follow-up. Retina. 2013;33(2):329–338. doi: 10.1097/IAE.0b013e318275394a 23099498
17. Yoon JM, Shin DH, Kim SJ, Ham DI, Kang SW, Chang YS, et al. Outcomes after Laser Versus Combined Laser and Bevacizumab Treatment for Type 1 Retinopathy of Prematurity in Zone I. Retina. 2017;37(1):88–96. doi: 10.1097/IAE.0000000000001125 27347645
18. Geloneck M, Chan J, Chuang A, Mintz-Hittner H. BEAT-ROP refraction data at age 2 years. Journal of AAPOS. 2013;17(1):e5.
19. Araz-Ersan B, Kir N, Tuncer S, Aydinoglu-Candan O, Yildiz-Inec D, Akdogan B, et al. Preliminary anatomical and neurodevelopmental outcomes of intravitreal bevacizumab as adjunctive treatment for retinopathy of prematurity. Curr Eye Res. 2015;40(6):585–591. doi: 10.3109/02713683.2014.941070 25025864
20. Axer-Siegel R, Snir M, Ron Y, Friling R, Sirota L, Weinberger D. Intravitreal bevacizumab as supplemental treatment or monotherapy for severe retinopathy of prematurity. Retina. 2011;31(7):1239–1247. doi: 10.1097/IAE.0b013e31820d4000 21555969
21. Chen YC, Chen SN, Yang BC, Lee KH, Chuang CC, Cheng CY. Refractive and Biometric Outcomes in Patients with Retinopathy of Prematurity Treated with Intravitreal Injection of Ranibizumab as Compared with Bevacizumab: A Clinical Study of Correction at Three Years of Age. J Ophthalmol. 2018;2018:4565216. doi: 10.1155/2018/4565216 29713524
22. Gunay M, Celik G, Gunay BO, Aktas A, Karatekin G, Ovali F. Evaluation of 2-year outcomes following intravitreal bevacizumab (IVB) for aggressive posterior retinopathy of prematurity. Arq Bras Oftalmol. 2015;78(5):300–304. doi: 10.5935/0004-2749.20150079 26466229
23. Gunay M, Sukgen EA, Celik G, Kocluk Y. Comparison of Bevacizumab, Ranibizumab, and Laser Photocoagulation in the Treatment of Retinopathy of Prematurity in Turkey. Curr Eye Res. 2017;42(3):462–469. doi: 10.1080/02713683.2016.1196709 27420302
24. Kabatas EU, Kurtul BE, Altiaylik Ozer P, Kabatas N. Comparison of Intravitreal Bevacizumab, Intravitreal Ranibizumab and Laser Photocoagulation for Treatment of Type 1 Retinopathy of Prematurity in Turkish Preterm Children. Curr Eye Res. 2017;42(7):1054–1058. doi: 10.1080/02713683.2016.1264607 28128986
25. Kimyon S, Mete A. Comparison of Bevacizumab and Ranibizumab in the Treatment of Type 1 Retinopathy of Prematurity Affecting Zone 1. Ophthalmologica. 2018;240(2):99–105. doi: 10.1159/000489023 29920490
26. Lin CJ, Tsai YY. Axial length, refraction, and retinal vascularization 1 year after ranibizumab or bevacizumab treatment for retinopathy of prematurity. Clin Ophthalmol. 2016;10:1323–1327. doi: 10.2147/OPTH.S110717 27499611
27. Roohipoor R, Karkhaneh R, Riazi-Esfahani M, Dastjani Farahani A, Khodabandeh A, Ebrahimi Adib N, et al. Comparison of Intravitreal Bevacizumab and Laser Photocoagulation in the Treatment of Retinopathy of Prematurity. Ophthalmol Retina. 2018;2(9):942–948. doi: 10.1016/j.oret.2018.01.017 31047228
28. Silbert D, Matta N, Tian J, Singman E. Comparing the SureSight autorefractor and the plusoptiX photoscreener for pediatric vision screening. Strabismus. 2014;22(2):64–67. doi: 10.3109/09273972.2014.904896 24738949
29. Harvey EM, Dobson V, Miller JM, Clifford-Donaldson CE, Green TK, Messer DH, et al. Accuracy of the Welch Allyn SureSight for measurement of magnitude of astigmatism in 3- to 7-year-old children. J AAPOS. 2009;13(5):466–471. doi: 10.1016/j.jaapos.2009.08.013 19840726
30. Kulp MT, Ying GS, Huang J, Maguire M, Quinn G, Ciner EB, et al. Accuracy of noncycloplegic retinoscopy, retinomax autorefractor, and SureSight vision screener for detecting significant refractive errors. Invest Ophthalmol Vis Sci. 2014;55(3):1378–1385. doi: 10.1167/iovs.13-13433 24481262
31. Mintz-Hittner HA, Kennedy KA, Chuang AZ. Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. The New England journal of medicine. 2011;364(7):603–615. doi: 10.1056/NEJMoa1007374 21323540
32. Quinn GE, Dobson V, Davitt BV, Wallace DK, Hardy RJ, Tung B, et al. Progression of myopia and high myopia in the Early Treatment for Retinopathy of Prematurity study: findings at 4 to 6 years of age. J AAPOS. 2013;17(2):124–128. doi: 10.1016/j.jaapos.2012.10.025 23622444
33. Pertl L, Steinwender G, Mayer C, Hausberger S, Poschl EM, Wackernagel W, et al. A Systematic Review and Meta-Analysis on the Safety of Vascular Endothelial Growth Factor (VEGF) Inhibitors for the Treatment of Retinopathy of Prematurity. PLoS One. 2015;10(6):e0129383. doi: 10.1371/journal.pone.0129383 26083024
34. Malhotra P, Kishore K. Long-Term Safety and Efficacy of Intravitreal Bevacizumab (IVB) for Aggressive Posterior Retinopathy of Prematurity (AP-ROP). Invest Ophthalmol Vis Sci Annual Meeting Abstract. 2014.
35. Li Z, Zhang Y, Liao Y, Zeng R, Zeng P, Lan Y. Comparison of efficacy between anti-vascular endothelial growth factor (VEGF) and laser treatment in Type-1 and threshold retinopathy of prematurity (ROP). BMC Ophthalmol. 2018;18(1):19. doi: 10.1186/s12886-018-0685-6 29378530
36. Mintz-Hittner HA, Geloneck MM. Review of effects of anti-VEGF treatment on refractive error. Eye Brain. 2016;8:135–140. doi: 10.2147/EB.S99306 28539808
37. Sankar MJ, Sankar J, Chandra P. Anti-vascular endothelial growth factor (VEGF) drugs for treatment of retinopathy of prematurity. Cochrane Database Syst Rev. 2018;1:CD009734. doi: 10.1002/14651858.CD009734.pub3 29308602
38. Abri Aghdam K, Khadamy J, Falavarjani KG, Tsui I. Refractive outcomes following the treatment of retinopathy of prematurity in the anti-VEGF era: a literature review. J AAPOS. 2016;20(6):539–540 e533. doi: 10.1016/j.jaapos.2016.09.013 27810419
39. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi: 10.1371/journal.pmed.1000097 19621072
40. Fierson WM, American Academy of Pediatrics Section on O, American Academy of O, American Association for Pediatric O, Strabismus, American Association of Certified O. Screening examination of premature infants for retinopathy of prematurity. Pediatrics. 2013;131(1):189–195. doi: 10.1542/peds.2012-2996 23277315
41. Early Treatment For Retinopathy Of Prematurity Cooperative G. Revised indications for the treatment of retinopathy of prematurity: results of the early treatment for retinopathy of prematurity randomized trial. Arch Ophthalmol. 2003;121(12):1684–1694. doi: 10.1001/archopht.121.12.1684 14662586
42. Higgins JPT, Altman DG, Sterne GAC. Chapter 8: Assessing risk of bias in included studies. In: Higgins JPT, Green S, editors. Cochrane Handbook for Systematic Reviews of Interventions. 5.1.0 ed: The Cochrane Collaboration; 2011.
43. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–605. doi: 10.1007/s10654-010-9491-z 20652370
44. Geloneck MM, Chuang AZ, Clark WL, Hunt MG, Norman AA, Packwood EA, et al. Refractive outcomes following bevacizumab monotherapy compared with conventional laser treatment: a randomized clinical trial. JAMA Ophthalmol. 2014;132(11):1327–1333. doi: 10.1001/jamaophthalmol.2014.2772 25103848
45. O'Keeffe N, Murphy J, O'Keefe M, Lanigan B. Bevacizumab compared with diode laser in stage 3 posterior retinopathy of prematurity: A 5 year follow up. Ir Med J. 2016;109(2):355. 27685689
46. Lee YS, See LC, Chang SH, Wang NK, Hwang YS, Lai CC, et al. Macular Structures, Optical Components, and Visual Acuity in Preschool Children after Intravitreal Bevacizumab or Laser Treatment. Am J Ophthalmol. 2018;192:20–30. doi: 10.1016/j.ajo.2018.05.002 29753851
47. Kang HG, Kim TY, Han J, Han SH. Refractive Outcomes of 4-Year-old Children after Intravitreal Anti-vascular Endothelial Growth Factor versus Laser Photocoagulation for Retinopathy of Prematurity. Korean J Ophthalmol. 2019;33(3):272–278. doi: 10.3341/kjo.2019.0011 31179659
48. Mayer DL, Hansen RM, Moore BD, Kim S, Fulton AB. Cycloplegic refractions in healthy children aged 1 through 48 months. Arch Ophthalmol. 2001;119(11):1625–1628. doi: ecs00292 [pii]. doi: 10.1001/archopht.119.11.1625 11709012
49. Tseng CC, Chen SN, Hwang JF, Lin CJ. Different refractive errors in triplets with retinopathy of prematurity treated with bevacizumab. J Pediatr Ophthalmol Strabismus. 2012;49:e41–43. doi: 10.3928/01913913-20120731-03 22881829
50. Larranaga-Fragoso P, Peralta J, Bravo-Ljubetic L, Pastora N, Abelairas-Gomez J. Intravitreal Bevacizumab for Zone II Retinopathy of Prematurity. J Pediatr Ophthalmol Strabismus. 2016;53(6):375–382. doi: 10.3928/01913913-20160727-01 27537247
51. Darlow BA, Ells AL, Gilbert CE, Gole GA, Quinn GE. Are we there yet? Bevacizumab therapy for retinopathy of prematurity. Arch Dis Child Fetal Neonatal Ed. 2013;98(2):F170–174. doi: 10.1136/archdischild-2011-301148 22209748
52. Harder BC, von Baltz S, Jonas JB, Schlichtenbrede FC. Intravitreal low-dosage bevacizumab for retinopathy of prematurity. Acta Ophthalmol. 2014;92(6):577–581. doi: 10.1111/aos.12266 24020921
53. Wallace DK, Dean TW, Hartnett ME, Kong L, Smith LE, Hubbard GB, et al. A Dosing Study of Bevacizumab for Retinopathy of Prematurity: Late Recurrences and Additional Treatments. Ophthalmology. 2018;125(12):1961–1966. doi: 10.1016/j.ophtha.2018.05.001 29887334
54. Wallace DK, Kraker RT, Freedman SF, Crouch ER, Hutchinson AK, Bhatt AR, et al. Assessment of Lower Doses of Intravitreous Bevacizumab for Retinopathy of Prematurity: A Phase 1 Dosing Study. JAMA Ophthalmol. 2017;135(6):654–656. doi: 10.1001/jamaophthalmol.2017.1055 28448664
55. Menke MN, Framme C, Nelle M, Berger MR, Sturm V, Wolf S. Intravitreal ranibizumab monotherapy to treat retinopathy of prematurity zone II, stage 3 with plus disease. BMC Ophthalmol. 2015;15:20. doi: 10.1186/s12886-015-0001-7 25886603
56. Arambulo O, Dib G, Iturralde J, Duran F, Brito M, Fortes Filho JB. Intravitreal ranibizumab as a primary or a combined treatment for severe retinopathy of prematurity. Clin Ophthalmol. 2015;9:2027–2032. doi: 10.2147/OPTH.S90979 26604673
57. Castellanos MA, Schwartz S, Garcia-Aguirre G, Quiroz-Mercado H. Short-term outcome after intravitreal ranibizumab injections for the treatment of retinopathy of prematurity. Br J Ophthalmol. 2013;97(7):816–819. doi: 10.1136/bjophthalmol-2012-302276 23221964
58. Salman AG, Said AM. Structural, visual and refractive outcomes of intravitreal aflibercept injection in high-risk prethreshold type 1 retinopathy of prematurity. Ophthalmic Res. 2015;53(1):15–20. doi: 10.1159/000364809 25471087
59. Cheng Y, Meng Q, Linghu D, Zhao M, Liang J. A lower dose of intravitreal conbercept effectively treats retinopathy of prematurity. Sci Rep. 2018;8(1):10732. doi: 10.1038/s41598-018-28987-6 30013230
60. Jin E, Yin H, Li X, Zhao M. Short-Term Outcomes after Intravitreal Injections of Conbercept Versus Ranibizumab for the Treatment of Retinopathy of Prematurity. Retina. 2018;38(8):1595–1604. doi: 10.1097/IAE.0000000000001763 28699927
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Úspěšná resuscitativní thorakotomie v přednemocniční neodkladné péči
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts