Dietary habits of the black-necked swan Cygnus melancoryphus (Birds: Anatidae) and variability of the aquatic macrophyte cover in the Río Cruces wetland, southern Chile
Autoři:
Carlos Velásquez aff001; Eduardo Jaramillo aff002; Patricio Camus aff003; Fabio Labra aff005; Cristina San Martín aff002
Působiště autorů:
Instituto de Fomento Pesquero, Coquimbo, Chile
aff001; Instituto de Ciencias de la Tierra, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
aff002; Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
aff003; Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
aff004; Centro de Investigación e Innovación para el Cambio Climático, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
aff005
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0226331
Souhrn
The black-necked swan Cygnus melancoryphus is an aquatic herbivorous bird whose dietary habits depend on the dominance and accessibility of macrophyte banks in shallow areas of coastal and limnetic wetlands in southern South America. The swans from the Río Cruces wetland in southern Chile (ca. 39°S) feed mainly on the macrophyte Egeria densa from the water column between depths from less than 0,5 and 2,0 m. A micro- histological analysis of black-necked swan feces (N = 152) collected during six sampling occasions between 2012 and 2017 confirms the preferred consumption of E. densa and highlights the impact of temporal changes in the cover of these macrophytes on the swan’s diet. The dietary composition of black-necked swans appears as a reliable proxy for temporal changes in the distribution of the most common aquatic macrophytes in the Río Cruces wetland. These results highlight the importance of preserving shallow wetlands as the habitat for aquatic macrophytes that provide the main food source for these herbivorous water birds.
Klíčová slova:
Diet – Birds – Wetlands – Foraging – Spring – Statistical distributions – Surface water – Swans
Zdroje
1. Johnsgard P. Swans: Their Biology and Natural History. University of Nebraska. 2016.
2. Price LA. Swans of the World: In Nature, History, Myth and Art. Council Oak Books. 1995.
3. Monnie JB. Reintroduction of the trumpeter swan to its former prairie breeding range. J. Wildl. Manag. 1966; 3: 691–696.
4. Lumsden HG, Drever MC. Overview of the trumpeter swan reintroduction program in Ontario, 1982–2000. Waterbirds. 2002; 25: 301–312.
5. Nolet BA, Gyimesi A, Van Krimpen RR, de Boer WF, Stillman RA. Predicting effects of water regime changes on waterbirds: Insights from staging swans. PLoS ONE. 2016; 11(2): e0147340. doi: 10.1371/journal.pone.0147340 26862895
6. Shimada T, Ueda T, Hoshi M, Mori A. Effect of water level on habitat selection by foraging Whooper swans. Bird Res. 2017; 13: 5–9.
7. Jaramillo E, Schlatter R, Contreras H, Duarte C, Lagos N, Paredes E, et al. Emigration and mortality of black-necked swans (Cygnus melancoryphus) and disappearance of the macrophyte Egeria densa in a Ramsar wetland site of southern Chile. AMBIO. 2007; 36: 607–610. doi: 10.1579/0044-7447(2007)36[607:eamobs]2.0.co;2 18074900
8. BirdLife International. Cygnus melancoryphus. International Union for Conservation of Nature (IUCN). Available: http://datazone.birdlife.org/species/factsheet/black-necked-swan-Cygnus-melancoryphus.Accessed 2017 September 20.
9. Medrano F, Barros R, Norambuena HV, Matus R, Schimtt F. Atlas de aves nidificantes de Chile. Red de Observadores de Aves y Vida Silvestre de Chile. 2018.
10. Corti P, Schlatter R. Feeding ecology of black-necked swan Cygnus melancoryphus in two wetland of Southern Chile. Stud. Neotrop. Fauna E. 2002; 37: 9–14.
11. Corti P. Conducta de alimentación y capacidad de forrajeo del Cisne de cuello negro (Cygnus melancoryphus Molina, 1782) en humedales de Valdivia. Tesis de Grado, Escuela de Medicina Veterinaria, Universidad Austral de Chile; 1996.
12. Cursach JA, Rau JR, Tobar C, Vilugrón J, De la Fuente L.E. Alimentación del Cisne de cuello negro Cygnus melancoryphus (Aves: Anatidae) en un humedal marino de Chiloé, sur de Chile. Gayana. 2015; 79: 137–146.
13. Bortolus A, Iribarne OO, Martínez MM. Relationship between waterfowl and the seagrass Ruppia maritima in a southwestern Atlantic coastal lagoon. Estuaries. 1998; 21: 170–717.
14. Smith AN, Vernes KA, Ford HA. Grazing effects of Black Swans Cygnus atratus (Latham) on a seasonally flooded coastal wetland of eastern Australia. Limnology and Aquatic Birds. 2012; 45–57.
15. Allin CC, Husband TP. Mute swan (Cygnus olor) impact on submerged aquatic vegetation and macroinvertebrates in a Rhode Island coastal pond. Northeast Nat. 2003; 10: 305–318.
16. Badzinski SS, Ankney CD, Petrie SA. Influence of migrant tundra swans (Cygnus columbianus) and Canada geese (Branta canadensis) on aquatic vegetation at Long Point, Lake Erie, Ontario. Hydrobiologia. 2006; 567:195–211.
17. Universidad Austral de Chile. Programa de monitoreo ambiental actualizado del humedal del río Cruces y sus ríos tributarios 2017–2018. Informe final, Universidad Austral de Chile–Arauco. 2018; p. 811.
18. Cisternas M, Atwater BF, Torrejon F, Sawai Y, Machuca G, Lagos M, et al. Predecessors of the giant 1960 Chile earthquake. Nature. 2005; 437: 404–407. doi: 10.1038/nature03943 16163355
19. Schlatter RP, Salazar J, Villa A, Meza J. Reproductive biology of Black-necked swan Cygnus melancoryphus at three Chilean wetland areas and feeding ecology at Rio Cruces. In: Sears J and Bacon PJ (eds.) Proceedings of the Third IWRB International Swan Symposium, pp. 268–271. Waterfowl, Special Supplement, Oxford; 1991a.
20. Ramírez C, Carrasco E, Mariani S, Palacios N. La Desaparición del Luchecillo (Egeria densa) del Santuario del Río Cruces (Valdivia, Chile): una hipótesis plausible. Cien. Trab. 2006; 8: 79–86.
21. Velásquez C, Jaramillo E, Camus PA, San Martín C. Consumption of aquatic macrophytes by the Red-gartered Coot Fulica armillata (Birds: Rallidae) in a coastal wetland of north central Chile. Gayana. 2019; 83: 68–72.
22. Schlatter RP, Salazar J, Villa A, Meza J. Demography of Black-necked swan Cygnus melancoryphus at three Chilean wetland areas. In: Sears J and Bacon PJ (eds.) Proceedings of the Third IWRB International Swan Symposium, pp. 88–94. Waterfowl, Special Supplement, Oxford; 1991b.
23. Antas P, Nascimento J, Ataguile B, Koch B, Sherer S. Monitoring Anatidae populations in Rio Grande do Sul State, South Brazil. Gibier Faune Sauvage. 1996; 13: 513–530.
24. Schlatter R, Navarro RA, Corti P. Effects of El Niño Southern Oscillation on numbers of Black-necked Swans at Rio Cruces Sanctuary, Chile. Waterbirds. 2002; 25: 114–122.
25. Earnst SL, Rothe TC. Habitat selection by Tundra Swans on northern Alaska breeding grounds. Waterbirds. 2004; 27: 224–233.
26. Jaramillo E, Lagos NA, Labra FA, Paredes E, Acuña EO, Melnick D, et al. Recovery of Black-necked Swans, macrophytes and water quality in a Ramsar wetland of southern Chile: assessing resilience following sudden anthropogenic disturbances. Sci. Total Environ. 2018 a; 628: 291–301. doi: 10.1016/j.scitotenv.2018.01.333 29448019
27. Escaída J, Jaramillo E, Amtmann C, Lagos N. Crisis socioambiental: El humedal del río Cruces y el Cisne de cuello negro. Editorial Universidad Austral de Chile. 2014.
28. Jaramillo E, Duarte C, Labra FA, Lagos NA, Peruzzo B, Silva R, et al. Resilience of an aquatic macrophyte to an anthropogenically induced environmental stressor in a Ramsar wetland of southern Chile. AMBIO. 2018 b; (https://doi.org/10.1007/s13280-018-1071-6).
29. Universidad Austral de Chile. Diagnóstico ambiental del humedal del río Cruces y sus ríos tributarios: 2014–2015. Informe final, Universidad Austral de Chile–Arauco. 2015; p. 1518.
30. Bailey M, Petrie SA, Badzinski SS. Diet of mute swans in lower Great Lakes coastal marshes. J. Wildl. Manag. 2008; 72: 726–732.
31. Ayaichia F, Samraoui F, Baaziz N, Meziane N, Samraoui B. Sitting ducks: diet of wintering wildfowl in Lake Tonga, northeast Algeria. Wetl. Ecol. Manag. 2018; 26: 231–243.
32. Inger R, Bearhop S. Applications of stable isotope analyses to avian ecology. Ibis. 2008; 150: 447–461.
33. Pérez GE, Schondube JE, del Rio CM. Isótopos estables en ornitología: una introducción breve. Ornitol. Neotrop. 2008; 19: 95–112.
34. Johnson MK, Wofford H, Pearson HA. Microhistological techniques for food habits analyses. Department of Agriculture, Forest Service, New Orleans, USA. 1983.
35. Velásquez C, San Martín C, Jaramillo E, Camus PA. Catálogo microhistológico de macrófitas acuáticas de dos humedales costeros de Chile: Una herramienta para estudios tróficos en aves acuáticas herbívoras. Rev. Chil. Ornitol. 2018; 24: 79–84.
36. Bray JR, Curtis JT. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monograph. 1957; 27: 325–349.
37. Clarke KR, Gorley RN. PRIMER v6: User Manual / Tutorial. PRIMER-E, Plymouth. 2006.
38. Lagos NA, Paolini P, Jaramillo E, Lovengreen C, Duarte C, Contreras H. Environmental processes, water quality degradation, and decline of waterbird populations in the Riío Cruces wetland, Chile. Wetlands. 2008; 28: 938–950.
39. Verhegghen A, Bontemps S, Defourny P. A global NDVI and EVI reference data set for land-surface phenology using 13 years of daily SPOT-VEGETATION observations. Int. J. Remote Sen. 2014; 35(7): 2440–2471.
40. Ji L, Geng X, Sun K, Zhao Y, Gong P. Target detection method for water mapping using Landsat 8 OLI/TIRS imagery. Water. 2015; 7: 794–817.
41. Phillips SJ, Dudik M, Schapire RE. A Maximum Entropy Approach to Species Distribution Modeling. In: Greiner R and Schuurmans D (eds.) Proceedings of the 21st International Conference on Machine Learning, pp. 76–83. ACM Press, Banff; 2004.
42. Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006; 190: 231–259.
43. Phillips SJ, Dudík M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography. 2008; 31:161–175.
44. Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, et al. Novel methods improve prediction of species. Ecography. 2006; 29: 129–151.
45. Phillips SJ., Anderson RP., Dudík M., Schapire RE., Blair ME. Opening the black box: An open‐source release of Maxent. Ecography. 2017; 40: 887–893.
46. Freeman EA, Moisen GG. A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecol. Model. 2008; 217: 48–58.
47. Ramírez C, San Martín C. Diversidad de macrófitos chilenos. En: Vila I, Veloso A, Schlatter R, Ramírez C (eds.) Macrófitas y vertebrados de los sistemas límnicos de Chile. Editorial Universitaria. 2006. pp 21–60.
48. Noordhuis R, van der Molen DT, van den Berg MS. Response of herbivorous waterbirds to the return of Chara in Lake Veluwemeer, The Netherlands. Aquat. Bot. 2002; 72: 349–367.
49. Tatu KS, Anderson JT, Hindman LJ, Seidel G. Diurnal foraging activities of mute swans in Chesapeake Bay, Maryland. Waterbirds. 2007; 30: 121–128.
50. Sandsten H, Klaassen M. Swan foraging shapes spatial distribution of two submerged plants: favouring the preferred prey species. Oecologia. 2008; 156: 569–576. doi: 10.1007/s00442-008-1010-5 18335250
51. Velásquez C. Caracterización trófica del Cisne de cuello negro Cygnus melancoryphus (Aves: Anatidae), bajo fluctuaciones estacionales del nivel de agua en un humedal Ramsar del sur de Chile. Tesis de Postgrado, Escuela de Graduados, Universidad Austral de Chile; 2018.
52. González AL, Fariña JM. Changes in the abundance and distribution of black-necked swans (Cygnus melancoryphus) in the Carlos Anwandter Nature Sanctuary and Adjacent Wetlands, Valdivia, Chile. Waterbirds. 2013; 36: 507–514.
53. Gaston KJ, Blackburn TM, Lawton JH. Interspecific abundance-range size relationships: an appraisal of mechanisms. J. Animal Ecol. 1997; 66: 579–601.
54. Gaston KJ, Blackburn TM, Lawton JH. Aggregation and the interspecific abundance-occupancy relationships. J. Animal Ecol. 1998; 67(6): 995–999.
55. Boettcher CT. Variación comparativa de biomasa estacional en dos macrófitos de la Región de Valdivia, Chile. Tesis de Grado, Escuela de Ciencias Biológicas, Universidad Austral de Chile. 2007.
56. Steubing L, Ramírez C, Alberdi M. Energy content of water-and bog-plant associations in the region of Valdivia (Chile). Vegetatio. 1980; 43: 153–161.
57. Bianco CA, Kraus TA, Vegetti AC. La hoja, morfología externa y anatomía. Universidad Nacional de Río Cuarto y Universidad Nacional del Litoral. 2005.
58. Vaz-Ferreira R, Rilla F. Black-necked Swan Cygnus melancoryphus and Coscoroba Swan Coscoroba coscoroba in a wetland in Uruguay. Wildfowl. 1991; 4: 272–277.
59. Norambuena CM, Bozinovic F. Health and nutritional status of a perturbed Black-necked swan (Cygnus melancoryphus) population: diet quality. J. Zoo. Wildl. Med. 2009; 40: 607–616. doi: 10.1638/2007-0158.1 20063805
60. Xia S, Liu Y, Chen B, Jia Y, Zhang H, Liu G, et al. Effect of water level fluctuations on wintering goose abundance in Poyang Lake wetlands of China. Chin. Geogra. Sci. 2016; 27: 248–258.
61. Figueroa-Fábrega L, Galaz J, Merino C. Conocimiento y conservación del Cisne de cuello negro Cygnus melancoryphus (Molina, 1782) en el humedal del río Cruces, Valdivia, Chile. Gestión Amb. 2006; 12: 77–89.
62. Owen M, Cadbury CJ. The ecology and mortality of swans at the Ouse Washes, England. Wildfowl. 1975; 26: 31–42.
63. McKelvey RW, Verbeek MAM. Habitat use, behaviour and management of trumpeter swans, Cygnus buccinator, wintering at Comox, British Columbia. Can. Field-Nat. 1988; 102: 434–441.
64. Peris SJ, Sanguinetti J, Pescador M. Have Patagonian waterfowl been affected by the introduction of the American mink Mustela vison?. Oryx. 2009; 43: 648–654.
65. Rau JR, Jiménez JE. Diet of puma (Puma concolor, Carnivora: Felidae) in coastal and Andean ranges of southern Chile. Stud. Neotrop. Fauna E. 2002; 37: 201–205.
66. Fariña JM, He Q, Silliman B, Bertness M. Biogeography of salt marsh plant zonation on the pacific coast of South America. J. Biogeogr. 2018; 45: 238–247.
67. Lagos NA, Labra FA, Jaramillo E, Marín A, Fariña JM, Camaño A. Ecosystem processes, management and human dimension of tectonically-influenced wetlands along the coast of central and southern Chile. Gayana. 2019; 83: 57–62.
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Masturbační chování žen v ČR − dotazníková studie
- Nejasný stín na plicích – kazuistika
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Somatizace stresu – typické projevy a možnosti řešení
Najčítanejšie v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts