Experimental hut evaluation of DawaPlus 3.0 LN and DawaPlus 4.0 LN treated with deltamethrin and PBO against free-flying populations of Anopheles gambiae s.l. in Vallée du Kou, Burkina Faso
Autoři:
Koama Bayili aff001; Sévérin N’Do aff001; Rajpal S. Yadav aff003; Moussa Namountougou aff001; Abdoulaye Ouattara aff001; Roch K. Dabiré aff001; Georges A. Ouédraogo aff002; Abdoulaye Diabaté aff001
Působiště autorů:
Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
aff001; Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
aff002; Vector Ecology and Management, Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
aff003
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0226191
Souhrn
Background
In view of widespread pyrethroid resistance in malaria vectors in Africa, two long-lasting insecticidal nets (LLINs) incorporated with a synergist, piperonyl butoxide (PBO), DawaPlus 3.0 (deltamethrin + PBO in the roof panel; deltamethrin alone in the side panels) and DawaPlus 4.0 (deltamethrin + PBO in all panels), were evaluated in an experimental hut trial in a rice growing irrigated area in Burkina Faso. Efficacy of nets was tested against free-flying malaria vector, Anopheles gambiae s.l., with high pyrethroid resistance involving L1014F kdr and CYP6P3P450 resistance mechanisms.
Methodology
The efficacy of unwashed and 20-times washed DawaPlus 3.0 (polyethylene roof panel with 120 mg/m2 deltamethrin and 440 mg/m2 PBO; polyester side panels with deltamethrin 100 mg/m2) and DawaPlus 4.0 (same composition as roof of DawaPlus 3.0) was evaluated against DawaPlus 2.0 (80 mg/m2 deltamethrin; positive control). Volunteer sleepers and treatments were rotated in huts using a Latin square design on 63 consecutive nights during August–October 2016. Mortality, human blood-feeding inhibition, deterrence and exit rates of An. gambiae s.l. were monitored.
Principal findings
Significantly higher rates of mortality and blood-feeding inhibition were observed with unwashed DawaPlus 4.0 (36%; 47.5%) than unwashed DawaPlus 3.0 (11.8%; 33.3%), DawaPlus 2.0 (4.3%; 6.4%) or untreated net (P < 0.05). Washing reduced personal protective efficacy yet PBO-LLINs were more protective and both met the WHO criteria.
Conclusions
The PBO-containing DawaPlus 4.0 significantly protected against An. gambiae s.l. in the study area. Unwashed DawaPlus 3.0 gave low to moderate protection against the positive control. PBO inhibits oxidase action; hence in areas with active malaria transmission having oxidase mechanisms, PBO nets could confer additional personal protection.
Klíčová slova:
Death rates – Malaria – Larvae – Enzyme metabolism – Insecticides – Insect vectors – Mosquitoes – Anopheles gambiae
Zdroje
1. WHO. World malaria report 2018. Geneva: World Health Organization; 2018. Available from: http://www.who.int/iris/handle/10665/275867.
2. WHO. World malaria report 2015. Geneva: World Health Organization; 2015. Available from: https://apps.who.int/iris/bitstream/handle/10665/200018/9789241565158_eng.pdf.
3. Protopopoff N, Wright A, West PA, Tigererwa R, Mosha FW, Kisinza W, et al. Combination of insecticide treated nets and indoor residual spraying in northern Tanzania provides additional reduction in vector population density and malaria transmission rates compared to insecticide treated nets alone: A randomised control trial. PLoS One. 2015;10:1–11.
4. Zaim M, Aitio A, Nakashima N. Safety of pyrethroid-treated mosquito nets. Med Vet Entomol. 2000. 14(1):1–5. doi: 10.1046/j.1365-2915.2000.00211.x 10759305
5. WHO. Global plan for insecticide resustance management in malaria vectors. Geneva: World Health Organization, 2012. Available from: https://apps.who.int/iris/bitstream/handle/10665/44846/9789241564472_eng.pdf.
6. WHO. World malaria report 2017. Geneva: World Health Organization; 2018. Available from: https://apps.who.int/iris/bitstream/handle/10665/259492/9789241565523-eng.pdf.
7. Kelly-Hope L, Ranson H, Hemingway J. Lessons from the past: managing insecticide resistance in malaria control and eradication programmes. Lancet Infect. Dis. 2008;8:387–389. doi: 10.1016/S1473-3099(08)70045-8 18374633
8. Hemingway J, Ranson H, Magill A, Kolaczinski J, Fornadel C, Gimnig J, et al. Averting a malaria disaster: will insecticide resistance derail malaria control? Lancet 2016;387(10029):1785–1788. doi: 10.1016/S0140-6736(15)00417-1 26880124
9. Asidi AN, N’Guessan R, Hutchinson RA, Traoré-Lamizana M, Carnevale P, Curtis CF. Experimental hut comparisons of nets treated with carbamate or pyrethroid insecticides, washed or unwashed, against pyrethroid-resistant mosquitoes. Med Vet Entomol. 2004;18:134–140. doi: 10.1111/j.0269-283X.2004.00485.x 15189238
10. Diabaté A, Baldet T, Chandre F, Guiguemdé RT, Brengues C, Guillet P, et al. First report of the kdr mutation in Anopheles gambiae M form from Burkina Faso, West Africa. Parassitologia. 2002;44:157–158. 12701378
11. Dabiré KR, Diabaté A, Namontougou M, Djogbenou L, Kengne P, Simard F, et al. Distribution of insensitive acetylcholinesterase (ace-1R) in Anopheles gambiae s.l. populations from Burkina Faso (West Africa). Trop Med Int Health. 2009;14:396–403. doi: 10.1111/j.1365-3156.2009.02243.x 19254231
12. Namountougou M, Simard F, Baldet T, Diabaté A, Ouédraogo JB, Martin T, et al. Multiple insecticide resistance in Anopheles gambiae s.l. populations from Burkina Faso, West Africa. PLoS One. 2012;7:e48412. doi: 10.1371/journal.pone.0048412 23189131
13. Toé KH, Jones CM, N’fale S, Ismai HM, Dabiré RK, Ranson H. Increased pyrethroid resistance in malaria vectors and decreased bed net effectiveness, Burkina Faso. Emerg Infect Dis. 2014;20:1691–1696. doi: 10.3201/eid2010.140619 25279965
14. N’Guessan R, Boko P, Odjo A, Akogbéto M, Yates A, Rowland M. Chlorfenapyr: a pyrrole insecticide for the control of pyrethroid or DDT resistant Anopheles gambiae (Diptera: Culicidae) mosquitoes. Acta Trop. 2007;102:69–78. doi: 10.1016/j.actatropica.2007.03.003 17466253
15. WHO. Conditions for use of long-lasting insecticidal nets treated with a pyrethroid and piperonyl butoxide. Geneva: World Health Organization; 2015. Available from: https://www.who.int/malaria/areas/vector_control/use-of-pbo-treated-llins-report-nov2015.pdf.
16. WHO. Guidelines for laboratory and field-testing of long-lasting insecticidal nets. Geneva: World Health Organization; 2013. Available from: https://apps.who.int/iris/bitstream/handle/10665/80270/9789241505277_eng.pdf.
17. Toé KH, N’Falé S, Dabiré RK, Ranson H, Jones CM. The recent escalation in strength of pyrethroid resistance in Anopheles coluzzi in West Africa is linked to increased expression of multiple gene families. BMC Genomics [Internet]. 2015;16:146. Available from: http://www.biomedcentral.com/1471-2164/16/146. doi: 10.1186/s12864-015-1342-6 25766412
18. WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Geneva: World Health Organization; 2016; Available from: http://apps.who.int/iris/bitstream/10665/250677/1/9789241511575-eng.pdf.
19. CDC. Guideline for evaluating insecticide resistance in vectors using the CDC bottle bioassay. Atlanta (GA): Centers for Disease Prevention and Control; 2013. Available from: https://www.cdc.gov/malaria/resources/pdf/fsp/ir_manual/ir_cdc_bioassay_en.pdf.
20. Koama Bayili, Severin N’do, Moussa Namountougou, Roger Sanou, Ouattara Abdoulaye, Roch K. Dabiré et al. Evaluation of efcacy of Interceptor®G2, a long-lasting insecticide net coated with a mixture of chlorfenapyr and alpha-cypermethrin, against pyrethroid resistant Anopheles gambiae s.l. in Burkina Faso. Malar J (2017) 16:190, doi: 10.1186/s12936-017-1846-4 28482891
21. Protopopoff N, Mosha JF, Lukole E, Charlwood JD, Wright A, Mwalimu CD, et al. Effectiveness of a long-lasting piperonyl butoxide-treated insecticidal net and indoor residual spray interventions, separately and together, against malaria transmitted by pyrethroid-resistant mosquitoes: a cluster, randomised controlled, two-by-two factorial design trial. Lancet 2018;391(10130):1577–1588. doi: 10.1016/S0140-6736(18)30427-6 29655496
22. Bingham G, Strode C, Tran L, Khoa PT, Jamet HP. Can piperonyl butoxide enhance the efficacy of pyrethroids against pyrethroid-resistant Aedes aegypti? Trop Med Int Health. 2011;16:492–500. doi: 10.1111/j.1365-3156.2010.02717.x 21324051
23. Chouaïbou M, Zivanovic GB, Knox TB, Jamet HP, Bonfoh B. Synergist bioassays: a simple method for initial metabolic resistance investigation of field Anopheles gambiae s.l. populations. Acta Trop. 2014;130:108–111. doi: 10.1016/j.actatropica.2013.10.020 24191946
24. Sarah G. Staedke, Moses R. Kamya, Grant Dorsey, Catherine Maiteki-Sebuguzi, Samuel Gonahasa, Adoke Yeka et al. LLIN Evaluation in Uganda Project (LLINEUP) Impact of long-lasting insecticidal nets with, and without, piperonyl butoxide on malaria indicators in Uganda: study protocol for a cluster-randomised trial. Trials 2019, https://doi.org/10.1186/s13063-019-3382-8.
25. Jacob M. Riveron, Silvie Huijben, Williams Tchapga, Magellan Tchouakui, Murielle J. Wondji, Micareme Tchoupo et al. Escalation of pyrethroid resistance in the malaria vector Anopheles funestus induces a loss of efficacy of piperonyl butoxide–based insecticide-treated nets in Mozambique. Jour Infec Dis, 2019;220:467–75, doi: 10.1093/infdis/jiz139 30923819
26. Gleave K, Lissenden N, Richardson M, Ranson H. Piperonyl butoxide (PBO) combined with pyrethroids in long-lasting insecticidal nets (LLINs) to prevent malaria in Africa. Cochrane Database of Systematic Reviews 2017, Issue 8. Art. No.: CD012776. doi: 10.1002/14651858.CD012745 www.cochranelibrary.com
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Profylaxe infekční endokarditidy ve stomatologii
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts