#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Diversity and distribution of microbial communities in floral nectar of two night-blooming plants of the Sonoran Desert


Autoři: Martin von Arx aff001;  Autumn Moore aff001;  Goggy Davidowitz aff001;  A. Elizabeth Arnold aff002
Působiště autorů: Department of Entomology, The University of Arizona, Tucson, AZ, United States of America aff001;  School of Plant Sciences and Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, United States of America aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0225309

Souhrn

Nectar-inhabiting microbes are increasingly appreciated as important components of plant-pollinator interactions. We quantified the incidence, abundance, diversity, and composition of bacterial and fungal communities in floral nectar of two night-blooming plants of the Sonoran Desert over the course of a flowering season: Datura wrightii (Solanaceae), which is pollinated by hawkmoths, and Agave palmeri (Agavaceae), which is pollinated by bats but visited by hawkmoths that forage for nectar. We examined the relevance of growing environment (greenhouse vs. field), time (before and after anthesis), season (from early to late in the flowering season), and flower visitors (excluded via mesh sleeves or allowed to visit flowers naturally) in shaping microbial assemblages in nectar. We isolated and identified bacteria and fungi from >300 nectar samples to estimate richness and taxonomic composition. Our results show that microbes were common in D. wrightii and A. palmeri nectar in the greenhouse but more so in field environments, both before and especially after anthesis. Bacteria were isolated more frequently than fungi. The abundance of microbes in nectar of D. wrightii peaked near the middle of the flowering season. Microbes generally were more abundant as time for floral visitation increased. The composition of bacterial and especially fungal communities differed significantly between nectars of D. wrightii and A. palmeri, opening the door to future studies examining their functional roles in shaping nectar chemistry, attractiveness, and pollinator specialization.

Klíčová slova:

Plants – Fungi – Bacteria – Microbiome – Flowering plants – Flowers – Deserts – Bacterial taxonomy


Zdroje

1. Vannette RL, Gauthier M-PL, Fukami T. Nectar bacteria, but not yeast, weaken a plant-pollinator mutualism. Proc R Soc London B Biol Sci. 2013;280: 20122601.

2. Vannette RL, Fukami T. Contrasting effects of yeasts and bacteria on floral nectar traits. Ann Bot. 2018;121: 1343–1349. doi: 10.1093/aob/mcy032 29562323

3. Herrera CM, De Vega C, Canto A, Pozo MI. Yeasts in floral nectar: a quantitative survey. Ann Bot. 2009;103: 1415–1423. doi: 10.1093/aob/mcp026 19208669

4. Álvarez-Pérez S, Herrera CM, De Vega C. Zooming in on nectar: a first exploration of nectar-associated bacteria in wild plant communities. FEMS Microbiol Ecol. 2012;80: 591–602. doi: 10.1111/j.1574-6941.2012.01329.x 22324904

5. Eisikowitch D, Kevan PG, Lachance MA. The nectar-inhabiting yeasts and their effect on pollen germination in common milkweed, Asclepias syriaca L. Isr J Bot. 1990;39: 217–225.

6. Herrera CM, García IM, Pérez R. Invisible floral larcenies: microbial communities degrade floral nectar of bumble-bee pollinated plants. Ecology 2008;89: 2369–2376. doi: 10.1890/08-0241.1 18831156

7. Rering CC, Beck JJ, Hall GW, McCartney MM, Vannette RL. Nectar-inhabiting microorganisms influence nectar volatile composition and attractiveness to a generalist pollinator. New Phytol. 2017;220: 750–759. doi: 10.1111/nph.14809 28960308

8. Canto A, Herrera CM, Rodriguez R. Nectar-living yeasts of a tropical host plant community: diversity and effects on community-wide floral nectar traits. PeerJ 2017;5: e3517. doi: 10.7717/peerj.3517 28717591

9. Marazzi B, Bronstein JL, Sommers PN, López BR, Bustamante E, Búrquez A, et al. Plant biotic interactions in the Sonoran Desert: Conservation challenges and future directions. J Southwest 2015;2–3: 457–501.

10. Franklin KA, Sommers PN, Aslan CE, López BR, Bronstein JL, Bustamante E, et al. Plant biotic interactions in the Sonoran Desert: current knowledge and future research perspectives. Int J Plant Sci. 2016;177: 217–234.

11. Regal PJ. Pollination by wind and animals: ecology of geographic patterns. Ann Rev Ecol Syst. 1982;13: 497–524.

12. Gilliam M. The absence of yeasts in nectars of selected Arizona plants attractive to honeybees, Apis mellifera. Ann Entomol Soc Amer. 1975;68: 705–706.

13. Gilliam M, Moffett JO, Kauffeld NK. Examination of floral nectar of Citrus, cotton, and Arizona desert plants for microbes. Apidologie. 1983;14: 299–302.

14. Archer SA, Predick KI. Climate change and ecosystems of the Southwestern United States. Rangelands 2008;30: 23–28.

15. Riffell JA, Alarcón R, Abrell L. Floral trait associations in hawkmoth-specialized and mixed pollination systems. Comm Integr Biol. 2008a;1: 6–8.

16. Alarcón R, Davidowitz G, Bronstein JL. Nectar usage in a southern Arizona hawkmoth community. Ecol Entomol 2008; 33: 503–509.

17. Alarcón R, Riffell JA, Davidowitz G, Hildebrand JG, Bronstein JL. Sex-dependent variation in the floral preferences of the hawkmoth Manduca sexta. Anim Behav. 2010;80: 289–296.

18. Sandhu DK, Waraich MK. Yeasts associated with pollinating bees and flower nectar. Microb Ecol. 1985;11: 51–58. doi: 10.1007/BF02015108 24221239

19. Brysch-Herzberg M. Ecology of yeasts in plant-bumblebee mutualism in Central Europe. FEMS Microbiol Ecol. 2004;50: 87–100. doi: 10.1016/j.femsec.2004.06.003 19712367

20. Canto A, Herrera CM, Medrano M, Pérez R, Garcia IM. Pollinator foraging modifies nectar sugar composition in Helleborus foetidus L. (Ranunculaceae): an experimental test. Am J Bot. 2008;95: 315–320. doi: 10.3732/ajb.95.3.315 21632356

21. De Vega C, Herrera CM, Johnson SD. Yeasts in floral nectar of some South African plants: quantification and associations with pollinator type and sugar concentration. S Afr J Bot. 2009;75: 798–806.

22. Herrera CM, Canto A, Pozo MI, Bazaga P. Inhospitable sweetness: nectar filtering of pollinator-borne inocula leads to impoverished, phylogenetically clustered yeast communities. Proc Roy Soc B. 2010;277: 747–754.

23. Pozo MI, Herrera CM, Bazaga P. Species richness of yeast communities in floral nectar of southern Spanish plants. Microb Ecol. 2011;61: 82–91. doi: 10.1007/s00248-010-9682-x 20449581

24. Peay KG, Belisle M, Fukami T. Phylogenetic relatedness predicts priority effects in nectar yeast communities. Proc R Soc London B Biol Sci. 2012;279: 749–758.

25. Arnold AE, Lutzoni F. Diversity and host range of foliar fungal endophytes: Are tropical leaves biodiversity hotspots? Ecology 2007;88: 541–549. doi: 10.1890/05-1459 17503580

26. Shaffer JP, Zalamea P-C, Sarmiento C, Gallery RE, Dalling JW, Davis AS, et al. Context-dependent and variable effects of endohyphal bacteria on interactions between fungi and seeds. Fungal Ecol. 2018;36: 117–127.

27. Shaffer JP, U’Ren JM, Baltrus DA, Gallery RE, Arnold AE. An endohyphal bacterium (Chitinophaga, Bacteroidetes) influences carbon source use by Fusarium keratoplasticum (F. solani species complex, Nectriaceae). Front Microbiol. 2017;8: e350.

28. Higgins KL, Coley PD, Kursar TA, Arnold AE. Culturing and direct PCR suggest prevalent host-generalism among fungal endophytes of tropical grasses. Mycologia. 2011;103: 247–260. doi: 10.3852/09-158 20943570

29. U’Ren JM, Lutzoni F, Miadlikowska J, Laetsch A, Arnold AE. Host and geographic structure of endophytic and endolichenic fungi at a continental scale. Am J Bot. 2012;99: 898–914. doi: 10.3732/ajb.1100459 22539507

30. Halpern M, Fridman S, Atamna-Ismaeel N, Izhaki I. Rosenbergiella nectarea gen. nov., sp. nov., in the family Enterobacteriaceae, isolated from floral nectar. Int Syst Evol Microbiol. 2013;63: 4259–4265.

31. Slauson LA. Pollination biology of two chiropterophilous agaves in Arizona. Am J Bot. 2000;87: 825–836. 10860913

32. Riffell JA, Alarcón R, Abrell L, Davidowitz G, Bronstein JL, Hildebrand JG. Behavioral consequences of innate preferences and olfactory learning in hawkmoth-flower interactions. Proc Natl Acad Sci USA. 2008b;105: 3404–3409. doi: 10.1073/pnas.0709811105 18305169

33. Bronstein JL, Huxman T, Horvath B, Farabee M, Davidowitz G. Reproductive biology of Datura wrightii: the benefits of a herbivorous pollinator. Ann Bot. 2009;103: 1435–1443. doi: 10.1093/aob/mcp053 19287014

34. Baker H, Baker I. Amino-acids in nectar and their evolutionary significance. Nature 1973;241: 543–545. doi: 10.1038/241543a0

35. Baker H, Baker I. The occurrence and significance of amino acids in floral nectar. Plant Syst Evol. 1986;151: 175–186.

36. Nicolson SW, Nepi M, Pacini E. Nectaries and nectar. Dordrecht, The Netherlands: Springer. 2007.

37. Nepi M. Beyond nectar sweetness: the hidden ecological role of non-protein amino acids in nectar. J Ecol. 2014;102: 108–115.

38. Levin E, McCue MD, Davidowitz G. Sex differences in the utilization of essential and non-essential amino acids in Lepidoptera. J Exp Biol. 2017a;220: 2733–2742.

39. Levin E, McCue MD, Davidowitz G. More than just sugar: allocation of nectar amino acids and fatty acids in a Lepidopteran. P Roy Soc B. 2017b;284: 2016–2126.

40. Mevi Shutz J, Erhardt A. Amino acids in nectar enhance butterfly fecundity: A long awaited link. Am Nat. 2005;165: 411–419. doi: 10.1086/429150 15791533

41. Fridman S, Izhaki I, Gerchman Y, Halpern M. Bacterial communities in floral nectar. Env Microbiol Rep. 2012;4: 97–104.

42. Toju H, Vannette RL, Gauthier ML, Dhami MK, Fukami T. Priority effects can persist across floral generations in nectar microbial metacommunities. Oikos. 2017;127: 345–352.

43. Pozo MI, Lachance MA, Herrera CM. Nectar yeasts of two southern Spanish plants: the roles of immigration and physiological traits in community assembly. FEMS Microbiol Ecol. 2012;80: 281–293. doi: 10.1111/j.1574-6941.2011.01286.x 22224447

44. Vannette RL, Fukami T. Dispersal enhances beta diversity in nectar microbes. Ecol Lett. 2017;20: 901–910. doi: 10.1111/ele.12787 28597955

45. Tsuji K, Fukami T. Community-wide consequences of sexual dimorphism: evidence from nectar microbes in dioecious plants. Ecology. 2018;99: 2476–2484. doi: 10.1002/ecy.2494 30216955

46. Horner MA, Fleming TH, Sahley CT. Foraging behaviour and energetics of a nectar-feeding bat, Leptonycteris curasoae (Chiroptera: Phyllostomidae). J Zool London. 1998;244: 575–586.

47. Levin E, Lopez-Martinez G, Fane B, Davidowitz G. Hawkmoths use nectar sugar to reduce oxidative damage from flight. Science. 2017c;355: 733. doi: 10.1126/science.aah4634 28209896


Článok vyšiel v časopise

PLOS One


2019 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#