Mapping the EORTC QLQ-C30 and QLQ-H&N35 to the EQ-5D for head and neck cancer: Can disease-specific utilities be obtained?
Autoři:
Ann-Jean C. C. Beck aff001; Jacobien M. Kieffer aff002; Valesca P. Retèl aff002; Lydia F. J. van Overveld aff004; Robert P. Takes aff005; Michiel W. M. van den Brekel aff001; Wim H. van Harten aff002; Martijn M. Stuiver aff001
Působiště autorů:
Department of Head and Neck Oncology and Surgery, the Netherlands Cancer Institute, Amsterdam, the Netherlands
aff001; Division of Psychosocial Research and Epidemiology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
aff002; Department of Health Technology and Services Research, University of Twente, Enschede, the Netherlands
aff003; Radboud University Medical Center, Radboud Institute for Health Sciences, Scientific Center for Quality of Healthcare, Nijmegen, the Netherlands
aff004; Department of Otolaryngology and Head and Neck surgery, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, the Netherlands
aff005; Institute of Phonetic Sciences, University of Amsterdam, Amsterdam, the Netherlands
aff006; Department of Oral and Maxillofacial Surgery, Amsterdam University Medical Center, Amsterdam, the Netherlands
aff007; Department of Clinical Epidemiology Biostatistics and Bioinformatics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
aff008
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0226077
Souhrn
Introduction
Innovations in head and neck cancer (HNC) treatment are often subject to economic evaluation prior to their reimbursement and subsequent access for patients. Mapping functions facilitate economic evaluation of new treatments when the required utility data is absent, but quality of life data is available. The objective of this study is to develop a mapping function translating the EORTC QLQ-C30 to EQ-5D-derived utilities for HNC through regression modeling, and to explore the added value of disease-specific EORTC QLQ-H&N35 scales to the model.
Methods
Data was obtained on patients with primary HNC treated with curative intent derived from two hospitals. Model development was conducted in two phases: 1. Predictor selection based on theory- and data-driven methods, resulting in three sets of potential predictors from the quality of life questionnaires; 2. Selection of the best out of four methods: ordinary-least squares, mixed-effects linear, Cox and beta regression, using the first set of predictors from EORTC QLQ-C30 scales with most correspondence to EQ-5D dimensions. Using a stepwise approach, we assessed added values of predictors in the other two sets. Model fit was assessed using Akaike and Bayesian Information Criterion (AIC and BIC) and model performance was evaluated by MAE, RMSE and limits of agreement (LOA).
Results
The beta regression model showed best model fit, with global health status, physical-, role- and emotional functioning and pain scales as predictors. Adding HNC-specific scales did not improve the model. Model performance was reasonable; R2 = 0.39, MAE = 0.0949, RMSE = 0.1209, 95% LOA of -0.243 to 0.231 (bias -0.01), with an error correlation of 0.32. The estimated shrinkage factor was 0.90.
Conclusions
Selected scales from the EORTC QLQ-C30 can be used to estimate utilities for HNC using beta regression. Including EORTC QLQ-H&N35 scales does not improve the mapping function. The mapping model may serve as a tool to enable cost-effectiveness analyses of innovative HNC treatments, for example for reimbursement issues. Further research should assess the robustness and generalizability of the function by validating the model in an external cohort of HNC patients.
Klíčová slova:
Cancer treatment – Quality of life – Emotions – Questionnaires – Eating – Mouth – Global health – Pain sensation
Zdroje
1. Szende A, Oppe M, Devlin N. EQ-5D value sets: inventory, comparative review and user guide: Springer Science & Business Media; 2007.
2. Aaronson NK, Ahmedzai S, Bergman B, Bullinger M, Cull A, Duez NJ, et al. The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. Journal of the National Cancer Institute. 1993;85(5):365–76. doi: 10.1093/jnci/85.5.365 8433390
3. Sherman AC, Simonton S, Adams DC, Vural E, Owens B, Hanna E. Assessing quality of life in patients with head and neck cancer: cross-validation of the European Organization for Research and Treatment of Cancer (EORTC) Quality of Life Head and Neck module (QLQ-H&N35). Archives of otolaryngology—head & neck surgery. 2000;126(4):459–67.
4. Proskorovsky I, Lewis P, Williams CD, Jordan K, Kyriakou C, Ishak J, et al. Mapping EORTC QLQ-C30 and QLQ-MY20 to EQ-5D in patients with multiple myeloma. Health and quality of life outcomes. 2014;12(1):35.
5. Kim E-j, Ko S-K, Kang H-Y. Mapping the cancer-specific EORTC QLQ-C30 and EORTC QLQ-BR23 to the generic EQ-5D in metastatic breast cancer patients. Quality of Life Research. 2012;21(7):1193–203. doi: 10.1007/s11136-011-0037-y 22012023
6. Wailoo AJ, Hernandez-Alava M, Manca A, Mejia A, Ray J, Crawford B, et al. Mapping to Estimate Health-State Utility from Non–Preference-Based Outcome Measures: An ISPOR Good Practices for Outcomes Research Task Force Report. Value in Health. 2017;20(1):18–27. doi: 10.1016/j.jval.2016.11.006 28212961
7. Crott R, Briggs A. Mapping the QLQ-C30 quality of life cancer questionnaire to EQ-5D patient preferences. The European journal of health economics. 2010;11(4):427–34. doi: 10.1007/s10198-010-0233-7 20473703
8. McKenzie L, Van Der Pol M. Mapping the EORTC QLQ C-30 onto the EQ-5D instrument: the potential to estimate QALYs without generic preference data. Value in Health. 2009;12(1):167–71. doi: 10.1111/j.1524-4733.2008.00405.x 18637140
9. Sullivan PW, Ghushchyan V. Mapping the EQ-5D index from the SF-12: US general population preferences in a nationally representative sample. Medical Decision Making. 2006;26(4):401–9. doi: 10.1177/0272989X06290496 16855128
10. Alava MH, Wailoo AJ, Ara R. Tails from the peak district: adjusted limited dependent variable mixture models of EQ-5D questionnaire health state utility values. Value in Health. 2012;15(3):550–61. doi: 10.1016/j.jval.2011.12.014 22583466
11. Tobin J. Estimation of relationships for limited dependent variables. Econometrica: journal of the Econometric Society. 1958:24–36.
12. Hunger M, Baumert J, Holle R. Analysis of SF-6D index data: is beta regression appropriate? Value in Health. 2011;14(5):759–67. doi: 10.1016/j.jval.2010.12.009 21839416
13. Longworth L, Yang Y, Young T, Hernandez Alva M, Mukuria C, Rowen D, et al. Use of generic and condition-specific measures of health-related quality of life in NICE decision-making: systematic review, statistical modelling and survey. 2014.
14. van Overveld LF, Braspenning JC, Hermens RP. Quality indicators of integrated care for patients with head and neck cancer. Clinical otolaryngology: official journal of ENT-UK; official journal of Netherlands Society for Oto-Rhino-Laryngology & Cervico-Facial Surgery. 2017;42(2):322–9.
15. Fayers PM, Aaronson NK, Bjordal K, Grønvold M, Curran D, Bottomley A. EORTC QLQ-C30 scoring manual. 2001.
16. Cohen J. Statistical power analysis for the behavioral sciences (revised ed.). New York: Academic Press; 1977.
17. Cribari-Neto F, Zeileis A. Beta Regression in R. 2010. 2010;34(2):24.
18. Smithson M, Verkuilen J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychological methods. 2006;11(1):54. doi: 10.1037/1082-989X.11.1.54 16594767
19. Akaike H. Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike: Springer; 1998. p. 199–213.
20. Raftery A. bayesian model selection in social research. Sociological Methodology. 1995;25:111–63.
21. Schwarz G. Estimating the dimension of a model. The annals of statistics. 1978;6(2):461–4.
22. Bland JM, Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. The lancet. 1986;327(8476):307–10.
23. Steyerberg EW. Clinical prediction models: a practical approach to development, validation, and updating: Springer Science & Business Media; 2008.
24. Sobin LH, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumours: John Wiley & Sons; 2011.
25. Tsai WL, Chien CY, Huang HY, Liao KC, Fang FM. Prognostic value of quality of life measured after treatment on subsequent survival in patients with nasopharyngeal carcinoma. Quality of life research: an international journal of quality of life aspects of treatment, care and rehabilitation. 2013;22(4):715–23.
26. Zmijewska-Tomczak M, Milecki P, Olek-Hrab K, Hojan K, Golusinski W, Rucinska A, et al. Factors influencing quality of life in patients during radiotherapy for head and neck cancer. Archives of medical science: AMS. 2014;10(6):1153–9. doi: 10.5114/aoms.2013.34317 25624853
27. Tribius S, Raguse M, Voigt C, Munscher A, Grobe A, Petersen C, et al. Residual deficits in quality of life one year after intensity-modulated radiotherapy for patients with locally advanced head and neck cancer: Results of a prospective study. Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesellschaft [et al]. 2015;191(6):501–10.
28. Hoxbroe Michaelsen S, Gronhoj C, Hoxbroe Michaelsen J, Friborg J, von Buchwald C. Quality of life in survivors of oropharyngeal cancer: A systematic review and meta-analysis of 1366 patients. European journal of cancer (Oxford, England: 1990). 2017;78:91–102.
29. Bozec A, Schultz P, Gal J, Chamorey E, Chateau Y, Dassonville O, et al. Evaluation of the information given to patients undergoing head and neck cancer surgery using the EORTC QLQ-INFO25 questionnaire: A prospective multicentric study. European journal of cancer (Oxford, England: 1990). 2016;67:73–82.
30. Kontodimopoulos N, Aletras VH, Paliouras D, Niakas D. Mapping the cancer-specific EORTC QLQ-C30 to the preference-based EQ-5D, SF-6D, and 15D instruments. Value in Health. 2009;12(8):1151–7. doi: 10.1111/j.1524-4733.2009.00569.x 19558372
31. Kim SH, Jo M-W, Kim H-J, Ahn J-H. Mapping EORTC QLQ-C30 onto EQ-5D for the assessment of cancer patients. Health and quality of life outcomes. 2012;10(1):151.
32. Rogers S, Miller R, Ali K, Minhas A, Williams H, Lowe DJIjoo, et al. Patients’ perceived health status following primary surgery for oral and oropharyngeal cancer. 2006;35(10):913–9.
33. Kanatas A, Rogers SJBJoO, Surgery M. A systematic review of patient self-completed questionnaires suitable for oral and maxillofacial surgery. 2010;48(8):579–90.
34. Khan I, Morris S. A non-linear beta-binomial regression model for mapping EORTC QLQ-C30 to the EQ-5D-3L in lung cancer patients: a comparison with existing approaches. Health and quality of life outcomes. 2014;12(1):163.
35. Pickard AS, Neary MP, Cella D. Estimation of minimally important differences in EQ-5D utility and VAS scores in cancer. Health and quality of life outcomes. 2007;5(1):70.
36. McTaggart-Cowan H, Teckle P, Peacock S. Mapping utilities from cancer-specific health-related quality of life instruments: a review of the literature. Expert review of pharmacoeconomics & outcomes research. 2013;13(6):753–65.
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts