In vitro activity and In vivo efficacy of Isoliquiritigenin against Staphylococcus xylosus ATCC 700404 by IGPD target
Autoři:
Qianwei Qu aff001; Jinpeng Wang aff001; Wenqiang Cui aff001; Yonghui Zhou aff001; Xiaoxu Xing aff001; Ruixiang Che aff001; Xin Liu aff001; Xueying Chen aff001; God’spower Bello-Onaghise aff001; Chunliu Dong aff001; Zhengze Li aff003; Xiubo Li aff004; Yanhua Li aff001
Působiště autorů:
College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
aff001; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
aff002; Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, P. R. China
aff003; Feed Research Institute Chinese Academy of Agricultural Science, Harbin, Heilongjiang, P. R. China
aff004
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pone.0226260
Souhrn
Staphylococcus xylosus (S. xylosus) is a type of coagulase-negative Staphylococcus, which was previously considered as non-pathogenic. However, recent studies have linked it with cases of mastitis in cows. Isoliquiritigenin (ISL) is a bioactive compound with pharmacological functions including antibacterial activity. In this study, we evaluated the effect of ISL on S. xylosus in vitro and in vivo. The MIC of ISL against S. xylosus was 80 μg/mL. It was observed that sub-MICs of ISL (1/2MIC, 1/4MIC, 1/8MIC) significantly inhibited the formation of S. xylosus biofilm in vitro. Previous studies have observed that inhibiting imidazole glycerol phosphate dehydratase (IGPD) concomitantly inhibited biofilm formation in S. xylosus. So, we designed experiments to target the formation of IGPD or inhibits its activities in S. xylosus ATCC 700404. The results indicated that the activity of IGPD and its histidine content decreased significantly under 1/2 MIC (40 μg/mL) ISL, and the expression of IGPD gene (hisB) and IGPD protein was significantly down-regulated. Furthermore, Bio-layer interferometry experiments showed that ISL directly interacted with IGPD protein (with strong affinity; KD = 234 μM). In addition, molecular docking was used to predict the binding mode of ISL and IGPD. In vivo tests revealed that, ISL significantly reduced TNF-α and IL-6 levels, mitigated the destruction of the mammary glands and reversed the production of inflammatory cells in mice. The results of the study suggest that, ISL may inhibit S. xylosus growth by acting on IGPD, which can be used as a target protein to treat infections caused by S. xylosus.
Klíčová slova:
Inflammation – Biofilms – Mouse models – Histidine – Mastitis – Mammary glands – Mutant strains – Bovine mastitis
Zdroje
1. Mushtaq S, Shah AM, Shah A, Lone SA, Hussain A, Hassan QP, et al. Bovine mastitis: An appraisal of its alternative herbal cure. Microbial Pathogenesis. 2018;114:357–61. doi: 10.1016/j.micpath.2017.12.024 WOS:000426226700057. 29233776
2. Pyorala S, Taponen S. Coagulase-negative staphylococci-Emerging mastitis pathogens. Vet Microbiol. 2009;134(1–2):3–8. doi: 10.1016/j.vetmic.2008.09.015 WOS:000263421900002. 18848410
3. Klimiene I, Virgailis M, Pavilonis A, Siugzdiniene R, Mockeliunas R, Ruzauskas M. Phenotypical and genotypical antimicrobial resistance of coagulase-negative staphylococci isolated from cow mastitis. Polish Journal of Veterinary Sciences. 2016;19(3):639–46. doi: 10.1515/pjvs-2016-0080 WOS:000383528400024. 27760017
4. Akhaddar A, Elouennass M, Naama O, Boucetta M. Staphylococcus xylosus Isolated from an Otogenic Brain Abscess in an Adolescent. Surgical Infections. 2010;11(6):559–61. doi: 10.1089/sur.2010.010 WOS:000285863400012. 20969474
5. Bochniarz M, Zdzisinska B, Wawron W, Szczubial M, Dabrowski R. Milk and serum IL-4, IL-6, IL-10, and amyloid A concentrations in cows with subclinical mastitis caused by coagulase-negative staphylococci. Journal of Dairy Science. 2017;100(12):9674–80. doi: 10.3168/jds.2017-13552 WOS:000415926900017. 28964518
6. Klibi A, Maaroufi A, Torres C, Jouini A. Detection and characterization of methicillin resistant and susceptible coagulase-negative Staphylococci in milk from cows with clinical mastitis in Tunisia. International journal of antimicrobial agents. 2018. doi: 10.1016/j.ijantimicag.2018.07.026 MEDLINE:30077662. 30077662
7. El-Jakee JK, Aref NE, Gomaa A, El-Hariri MD, Galal HM, Omar SA, et al. Emerging of coagulase negative staphylococci as a cause of mastitis in dairy animals: An environmental hazard ☆. International Journal of Veterinary Science & Medicine. 2013;1(2):74–8.
8. DePas WH, Bergkessel M, Newman DK. Aggregation of Nontuberculous Mycobacteria Is Regulated by Carbon-Nitrogen Balance. mBio. 2019;10(4):17. doi: 10.1128/mBio.01715-19 WOS:000481617000102. 31409683
9. Gardner SG, Marshall DD, Daum RS, Powers R, Somerville GA. Metabolic Mitigation of Staphylococcus aureus Vancomycin Intermediate-Level Susceptibility. Antimicrobial Agents and Chemotherapy. 2018;62(1):13. doi: 10.1128/aac.01608-17 WOS:000418565300023. 29109158
10. Dietl A-M, Amich J, Leal S, Beckmann N, Binder U, Beilhack A, et al. Histidine biosynthesis plays a crucial role in metal homeostasis and virulence of Aspergillus fumigatus. Virulence. 2016;7(4):465–76. doi: 10.1080/21505594.2016.1146848 WOS:000380006900013. 26854126
11. Alifano P, Fani R, Lio P, Lazcano A, Bazzicalupo M, Carlomagno MS, et al. Histidine biosynthetic pathway and genes: structure, regulation, and evolution. Microbiological reviews. 1996;60(1):44–69. MEDLINE:8852895. 8852895
12. Ahangar MS, Vyas R, Nasir N, Biswal BK. Structures of native, substrate-bound and inhibited forms of Mycobacterium tuberculosis imidazoleglycerol-phosphate dehydratase. Acta Crystallographica Section D-Biological Crystallography. 2013;69:2461–7. doi: 10.1107/s0907444913022579 WOS:000328370400019. 24311587
13. Kulis-Horn RK, Persicke M, Kalinowski J. Histidine biosynthesis, its regulation and biotechnological application in Corynebacterium glutamicum. Microbial Biotechnology. 2014;7(1):5–25. doi: 10.1111/1751-7915.12055 WOS:000328218800002. 23617600
14. Zhou Y-h, Xu C-g, Yang Y-b, Xing X-x, Liu X, Qu Q-w, et al. Histidine Metabolism and IGPD Play a Key Role in Cefquinome Inhibiting Biofilm Formation of Staphylococcus xylosus. Frontiers in Microbiology. 2018;9(665). doi: 10.3389/fmicb.2018.00665 29675012
15. Rasko DA, Sperandio V. Anti-virulence strategies to combat bacteria-mediated disease. Nature Reviews Drug Discovery. 2010;9(2):117–28. doi: 10.1038/nrd3013 WOS:000275357400015. 20081869
16. Testa C, Marogna G, Secchi L, Rubattu N. Antibiotics mastitis therapy: drug residue in lambs. Italian Journal of Animal Science. 2010;6(1s):601–.
17. Duarte CM, Freitas PP, Bexiga R. Technological advances in bovine mastitis diagnosis: an overview. Journal of Veterinary Diagnostic Investigation Official Publication of the American Association of Veterinary Laboratory Diagnosticians Inc. 2015;27(6):665–72.
18. Virdis S, Scarano C, Cossu F, Spanu V, Spanu C, De Santis EP. Antibiotic Resistance in Staphylococcus aureus and Coagulase Negative Staphylococci Isolated from Goats with Subclinical Mastitis. Veterinary Medicine International,2010,(2010-2-2). 2010;2010(2):517060.
19. Chen X-R, Wang X-T, Hao M-Q, Zhou Y-H, Cui W-Q, Xing X-X, et al. Homology Modeling and Virtual Screening to Discover Potent Inhibitors Targeting the Imidazole Glycerophosphate Dehydratase Protein in Staphylococcus xylosus. Frontiers in Chemistry. 2017;5. doi: 10.3389/fchem.2017.00098 WOS:000414858300001. 29177138
20. Farhadi F, Khameneh B, Iranshahi M, Iranshahy M. Antibacterial activity of flavonoids and their structure-activity relationship: An update review. Phytotherapy Research. 2019;33(1):13–40. doi: 10.1002/ptr.6208 WOS:000455064000002. 30346068
21. Kunthalert D, Baothong S, Khetkam P, Chokchaisiri S, Suksamrarn A. A chalcone with potent inhibiting activity against biofilm formation by nontypeable Haemophilus influenzae. Microbiology and Immunology. 2014;58(10):581–9. doi: 10.1111/1348-0421.12194 WOS:000342912900005. 25154700
22. Peng F, Du Q, Peng C, Wang N, Tang H, Xie X, et al. A Review: The Pharmacology of Isoliquiritigenin. Phytotherapy Research. 2015;29(7):969–77. doi: 10.1002/ptr.5348 WOS:000357855300002. 25907962
23. Gaur R, Gupta VK, Singh P, Pal A, Darokar MP, Bhakuni RS. Drug Resistance Reversal Potential of Isoliquiritigenin and Liquiritigenin Isolated from Glycyrrhiza glabra Against Methicillin-Resistant Staphylococcus aureus (MRSA). Phytotherapy Research. 2016;30(10):1708–15. doi: 10.1002/ptr.5677 WOS:000385700400017. 27388327
24. Wu M, Wu Y, Deng B, Li J, Cao H, Qu Y, et al. Isoliquiritigenin decreases the incidence of colitis-associated colorectal cancer by modulating the intestinal microbiota. Oncotarget. 2016;7(51):85318–31. doi: 10.18632/oncotarget.13347 WOS:000391353200123. 27863401
25. Feldman M, Santos J, Grenier D. Comparative Evaluation of Two Structurally Related Flavonoids, Isoliquiritigenin and Liquiritigenin, for Their Oral Infection Therapeutic Potential. J Nat Prod. 2011;74(9):1862–7. doi: 10.1021/np200174h WOS:000295100400004. 21866899
26. Manner S, Skogman M, Goeres D, Vuorela P, Fallarero A. Systematic Exploration of Natural and Synthetic Flavonoids for the Inhibition of Staphylococcus aureus Biofilms. International Journal of Molecular Sciences. 2013;14(10):19434–51. doi: 10.3390/ijms141019434 WOS:000328620900005. 24071942
27. Asl MN, Hosseinzadeh H. Review of pharmacological effects of Glycyrrhiza sp and its bioactive compounds. Phytotherapy Research. 2008;22(6):709–24. doi: 10.1002/ptr.2362 WOS:000256959100001. 18446848
28. Ramalingam M, Kim H, Lee Y, Lee Y-I. Phytochemical and Pharmacological Role of Liquiritigenin and Isoliquiritigenin From Radix Glycyrrhizae in Human Health and Disease Models. Frontiers in Aging Neuroscience. 2018;10. doi: 10.3389/fnagi.2018.00348 WOS:000448991400001. 30443212
29. CLSI. Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts, Approved Guideline. Wayne, PA: CLSI. 2004:CLSI document M44-A.
30. Al-Yousef HM, Ahmed AF, Al-Shabib NA, Laeeq S, Khan RA, Rehman MT, et al. Onion Peel Ethylacetate Fraction and Its Derived Constituent Quercetin 4 '-O-beta-D Glucopyranoside Attenuates Quorum Sensing Regulated Virulence and Biofilm Formation. Frontiers in Microbiology. 2017;8:10. doi: 10.3389/fmicb.2017.00010 WOS:000409346200001.
31. Wang C, Chang T, Yang H, Cui M. Antibacterial mechanism of lactic acid on physiological and morphological properties of Salmonella Enteritidis, Escherichia coli and Listeria monocytogenes. Food Control. 2015;47:231–6. doi: 10.1016/j.foodcont.2014.06.034 WOS:000343612700035.
32. Yang Y-B, Wang S, Wang C, Huang Q-Y, Bai J-W, Chen J-Q, et al. Emodin affects biofilm formation and expression of virulence factors in Streptococcus suis ATCC700794. Archives of Microbiology. 2015;197(10):1173–80. doi: 10.1007/s00203-015-1158-4 WOS:000363482100007. 26446827
33. Yang J, Guo S-Y, Pan F-Y, Geng H-X, Gong Y, Lou D, et al. Prokaryotic expression and polyclonal antibody preparation of a novel Rab-like protein mRabL5. Protein Expression and Purification. 2007;53(1):1–8. doi: 10.1016/j.pep.2006.10.025 WOS:000246245000001. 17251037
34. Martin RG, Goldberger RF. Imidazolylacetolphosphate:L-glutamate aminotransferase. Purification and physical properties. The Journal of biological chemistry. 1967;242(6):1168–74. MEDLINE:5337155. 5337155
35. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. Osteoarthritis Cartilage. 2012;20(4):256–60. doi: 10.1016/j.joca.2012.02.010 WOS:000302833300002. 22424462
36. Moher D, Hopewell S, Schulz KF, Montori V, Gotzsche PC, Devereaux PJ, et al. CONSORT 2010 explanation and elaboration: Updated guidelines for reporting parallel group randomised trials. Int J Surg. 2012;10(1):28–55. doi: 10.1016/j.ijsu.2011.10.001 WOS:000307637100008. 22036893
37. Oskarsson A, Yagdiran Y, Nazemi S, Tallkvist J, Knight CH. Short communication: Staphylococcus aureus infection modulates expression of drug transporters and inflammatory biomarkers in mouse mammary gland. Journal of Dairy Science. 2017;100(3):2375–80. doi: 10.3168/jds.2016-11650 WOS:000393725900066. 28088425
38. Han LQ, Yang GY, Zhu HS, Wang YY, Wang LF, Guo YJ, et al. Selection and use of reference genes in mouse mammary glands. Genet Mol Res. 2010;9(1):449–56. doi: 10.4238/vol9-1gmr724 WOS:000277326200040. 20391330
39. Raygosa JB, Torres JP, Valencia GL, Hori-Oshima S, Ramirez JCH, Manriquez LCP, et al. Molecular identification and frequency of isolated pathogens from bovine mastitis in dairy herds from Baja California Peninsula, Mexico. Rev Mex Cienc Pecu. 2018;9(4):754–68. doi: 10.22319/rmcp.v9i4.4365 WOS:000445804300010.
40. Huijps K, Lam T, Hogeveen H. Costs of mastitis: facts and perception. J Dairy Res. 2008;75(1):113–20. doi: 10.1017/S0022029907002932 WOS:000254326800018. 18226298
41. Wang S, Wang C, Gao LF, Cai H, Zhou YH, Yang YB, et al. Rutin Inhibits Streptococcus suis Biofilm Formation by Affecting CPS Biosynthesis. Frontiers in Pharmacology. 2017;8:12. doi: 10.3389/fphar.2017.00012 WOS:000403404300001.
42. F P, Q D, C P, N W, H T, X X, et al. A Review: The Pharmacology of Isoliquiritigenin. Phytotherapy Research. 2015;29(7):969–77. doi: 10.1002/ptr.5348 25907962
43. Rawson S, Bisson C, Hurdiss DL, Fazal A, McPhillie MJ, Sedelnikova SE, et al. Elucidating the structural basis for differing enzyme inhibitor potency by cryo-EM. Proc Natl Acad Sci U S A. 2018;115(8):1795–800. doi: 10.1073/pnas.1708839115 WOS:000425495000055. 29434040
44. Zeidan MB, Zara G, Viti C, Decorosi F, Mannazzu I, Budroni M, et al. L-Histidine Inhibits Biofilm Formation and FLO11-Associated Phenotypes in Saccharomyces cerevisiae Flor Yeasts. Plos One. 2014;9(11). doi: 10.1371/journal.pone.0112141 WOS:000344402000144. 25369456
45. Petersen RL. Strategies Using Bio-Layer Interferometry Biosensor Technology for Vaccine Research and Development. Biosensors. 2017;7(4). doi: 10.3390/bios7040049 MEDLINE:29088096. 29088096
46. Henriksen ST, Liu J, Estiu G, Oltvai ZN, Wiest O. Identification of novel bacterial histidine biosynthesis inhibitors using docking, ensemble rescoring, and whole-cell assays. Bioorg Med Chem. 2010;18(14):5148–56. doi: 10.1016/j.bmc.2010.05.060 WOS:000279744700033. 20573514
47. Adkins PRF, Dufour S, Spain JN, Calcutt MJ, Reilly TJ, Stewart GC, et al. Cross-sectional study to identify staphylococcal species isolated from teat and inguinal skin of different-aged dairy heifers. Journal of Dairy Science. 2018;101(4):3213–25. doi: 10.3168/jds.2017-13974 WOS:000429272300041. 29397170
48. Szczuka E, Jablonska L, Kaznowski A. Coagulase-negative staphylococci: pathogenesis, occurrence of antibiotic resistance genes and in vitro effects of antimicrobial agents on biofilm-growing bacteria. J Med Microbiol. 2016;65:1405–13. doi: 10.1099/jmm.0.000372 WOS:000390404900007. 27902368
49. Schukken YH, Gunther J, Fitzpatrick J, Fontaine MC, Goetze L, Holst O, et al. Host-response patterns of intramammary infections in dairy cows. Veterinary Immunology and Immunopathology. 2011;144(3–4):270–89. doi: 10.1016/j.vetimm.2011.08.022 WOS:000298126200011. 21955443
50. Supre K, Haesebrouck F, Zadoks RN, Vaneechoutte M, Piepers S, De Vliegher S. Some coagulase-negative Staphylococcus species affect udder health more than others. Journal of Dairy Science. 2011;94(5):2329–40. doi: 10.3168/jds.2010-3741 WOS:000289789000018. 21524522
51. Lai JL, Liu YH, Peng YC, Ge P, He CF, Liu C, et al. Indirubin Treatment of Lipopolysaccharide-Induced Mastitis in a Mouse Model and Activity in Mouse Mammary Epithelial Cells. Mediat Inflamm. 2017:13. doi: 10.1155/2017/3082805 WOS:000394958700001. 28255203
52. Wang JF, Li HE, Pan J, Dong J, Zhou X, Niu XD, et al. Oligopeptide Targeting Sortase A as Potential Anti-infective Therapy for Staphylococcus aureus. Frontiers in Microbiology. 2018;9:10. doi: 10.3389/fmicb.2018.00010 WOS:000425131700001.
53. Zhao YQ, Zhou M, Gao Y, Liu HY, Yang WY, Yue JH, et al. Shifted T Helper Cell Polarization in a Murine Staphylococcus aureus Mastitis Model. Plos One. 2015;10(7):15. doi: 10.1371/journal.pone.0134797 WOS:000358838400168. 26230498
54. Wang G, Sun B, Gao Y, Meng QH, Jiang HC. The effect of emodin-assisted early enteral nutrition on severe acute pancreatitis and secondary hepatic injury. Mediat Inflamm. 2007. doi: 10.1155/2007/29638 WOS:000254336800001. 18288270
55. Kimura A, Kishimoto T. IL-6: Regulator of Treg/Th17 balance. European Journal of Immunology. 2010;40(7):1830–5. doi: 10.1002/eji.201040391 WOS:000280220600010. 20583029
56. Sakemi Y, Tamura Y, Hagiwara K. Interleukin-6 in quarter milk as a further prediction marker for bovine subclinical mastitis. J Dairy Res. 2011;78(1):118–21. doi: 10.1017/S0022029910000828 WOS:000286788400017. 21134313
57. Kanangat S, Bronze MS, Meduri GU, Postlethwaite A, Stentz F, Tolley E, et al. Enhanced extracellular growth of Staphylococcus aureus in the presence of selected linear peptide fragments of human interleukin (IL)-1beta and IL-1 receptor antagonist. The Journal of infectious diseases. 2001;183(1):65–9. doi: 10.1086/317645 MEDLINE:11076706. 11076706
58. Burmanczuk A, Hola P, Milczak A, Piech T, Kowalski C, Wojciechowska B, et al. Quercetin decrease somatic cells count in mastitis of dairy cows. Res Vet Sci. 2018;117:255–9. doi: 10.1016/j.rvsc.2018.01.006 WOS:000430646300038. 29331686
59. Kwon H-M, Kang S-W, Choi Y-J, Jeong Y-J, Lim SS, Bae J-Y, et al. Inhibitory Effects of Licochalcone A and Isoliquiritigenin onMonocyte Adhesion to TNF-α-activated Endothelium*. Nutritional Sciences. 2005;8(3):153–8. KJD:ART001156947.
60. Yang X-L, Liu D, Bian K, Zhang D-D. Study on in vitro anti-inflammatory activity of total flavonoids from Glycyrrhizae Radix et Rhizoma and its ingredients. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2013;38(1):99–104. MEDLINE:23596884. 23596884
Článok vyšiel v časopise
PLOS One
2019 Číslo 12
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Masturbační chování žen v ČR − dotazníková studie
- Těžké menstruační krvácení může značit poruchu krevní srážlivosti. Jaký management vyšetření a léčby je v takovém případě vhodný?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
Najčítanejšie v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts