#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Metabolic responses of wheat seedlings to osmotic stress induced by various osmolytes under iso-osmotic conditions


Autoři: Eva Darko aff001;  Balázs Végh aff001;  Radwan Khalil aff002;  Tihana Marček aff003;  Gabriella Szalai aff001;  Magda Pál aff001;  Tibor Janda aff001
Působiště autorů: Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary aff001;  Botany Department, Faculty of Science, Benha University, Benha, Egypt aff002;  Department of Food and Nutrition Research, Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia aff003
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0226151

Souhrn

Many environmental stresses cause osmotic stress which induces several metabolic changes in plants. These changes often vary depending on the genotype, type and intensity of stress or the environmental conditions. In the current experiments, metabolic responses of wheat to osmotic stress induced by different kinds of osmolytes were studied under iso-osmotic stress conditions. A single wheat genotypes was treated with PEG-6000, mannitol, sorbitol or NaCl at such concentrations which reduce the osmotic potential of the culture media to the same level (-0.8MPa). The metabolic changes, including the accumulation of proline, glycine betaine (GB) and sugar metabolites (glucose, fructose, galactose, maltose and sucrose) were studied both in the leaves and roots together with monitoring the plant growth, changes in the photosynthetic activity and chlorophyll content of the leaves. In addition, the polyamine metabolism was also investigated. Although all osmolytes inhibited growth similarly, they induced different physiological and metabolic responses: the CO2 assimilation capacity, RWC content and the osmotic potential (ψπ) of the leaves decreased intensively, especially after mannitol and sorbitol treatments, followed by NaCl treatment, while PEG caused only a slight modification in these parameters. In the roots, the most pronounced decrease of ψπ was found after salt-treatments, followed by PEG treatment. Osmotic stress induced the accumulation of proline, glycine betaine and soluble sugars, such as fructose, glucose, sucrose and galactose in both the root and leaf sap. Specific metabolic response of roots and leaves under PEG included accumulation of glucose, fructose and GB (in the roots); sucrose, galactose and proline synthesis were dominant under NaCl stress while exposure to mannitol and sorbitol triggered polyamine metabolism and overproduction of maltose. The amount of those metabolites was time-dependent in the manner that longer exposure to iso-osmotic stress conditions stimulated the sugar metabolic routes. Our results showed that the various osmolytes activated different metabolic processes even under iso-osmotic stress conditions and these changes also differed in the leaves and roots.

Klíčová slova:

Glucose metabolism – Plant resistance to abiotic stress – Leaves – Osmotic shock – Proline – Sucrose – Mannitol – Fructoses


Zdroje

1. Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta. 2003;218: 1–14. doi: 10.1007/s00425-003-1105-5 14513379

2. Bowne JB, Erwin TA, Juttner J, Schnurbusch T, Langridge P, Bacic A, et al. Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level. Mol Plant. © The Authors. All rights reserved.; 2012;5: 418–429. doi: 10.1093/mp/ssr114 22207720

3. Marček T, Hamow KÁ, Végh B, Janda T, Darko E. Metabolic response to drought in six winter wheat genotypes. PLoS One. 2019;14: 1–23. doi: 10.1371/journal.pone.0212411 30779775

4. Do P, Drechsel O, Heyer AG, Hincha DK, Zuther E. Changes in free polyamine levels, expression of polyamine biosynthesis genes, and performance of rice cultivars under salt stress: a comparison with responses to drought. Front Plant Sci. 2014;5: 1–16. doi: 10.3389/fpls.2014.00182 24847340

5. Do PT, Degenkolbe T, Erban A, Heyer AG, Kopka J, Köhl KI, et al. Dissecting rice polyamine metabolism under controlled long-term drought stress. PLoS One. 2013;8. doi: 10.1371/journal.pone.0060325 23577102

6. Gavaghan CL, Li J V., Hadfield ST, Hole S, Nicholson JK, Wilson ID, et al. Application of NMR-based metabolomics to the investigation of salt stress in maize (Zea mays). Phytochem Anal. 2010;22: 214–224. doi: 10.1002/pca.1268 21204151

7. Molnar I, Gaspar L, Sarvari E, Dulai S, Hoffmann B, Molnar-Lang M, et al. Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes. Funct Plant Biol. 2004;31: 1149–1159. doi: 10.1071/fp03143

8. Slama I, Ghnaya T, Hessini K, Messedi D, Savouré A, Abdelly C. Comparative study of the effects of mannitol and PEG osmotic stress on growth and solute accumulation in Sesuvium portulacastrum. Environ Exp Bot. 2007;61: 10–17. doi: 10.1016/j.envexpbot.2007.02.004

9. Darko E, Janda T, Majláth I, Szopkó D, Dulai S, Molnár I, et al. Salt stress response of wheat–barley addition lines carrying chromosomes from the winter barley “Manas.” Euphytica. 2015;203: 491–504. doi: 10.1007/s10681-014-1245-7

10. Patade VY, Bhargava S, Suprasanna P. Salt and drought tolerance of sugarcane under iso-osmotic salt and water stress: Growth, osmolytes accumulation, and antioxidant defense. J Plant Interact. 2011;6: 275–282. doi: 10.1080/17429145.2011.557513

11. Rakhmankulova ZF, Voronin PY, Shuyskaya E V., Kuznetsova NA, Zhukovskaya N V., Toderich KN. Effect of NaCl and isoosmotic polyethylene glycol stress on gas exchange in shoots of the C4 xerohalophyte Haloxylon aphyllum (Chenopodiaceae). Photosynthetica. 2014;52: 437–443. doi: 10.1007/s11099-014-0048-3

12. Ghuge S, Rai A, Suprasanna P. Comparative effects of NaCl, PEG and mannitol Iso-osmotic stress on solute accumulation and antioxidant enzyme system in potato (Solanum tuberosum L.). In: Plant Stress [Internet]. 2010 [cited 20 Sep 2007] pp. 50–55. Available: http://www.globalsciencebooks.info/Online/GSBOnline/images/2010/PS_4(1)/PS_4(1)50-55o.pdf

13. Pál M, Horváth E, Janda T, Páldi E, Szalai G. Cadmium stimulates the accumulation of salicylic acid and its putative precursors in maize (Zea mays) plants. Physiol Plant. 2005;125: 356–364. doi: 10.1111/j.1399-3054.2005.00545.x

14. Lokhande VH, Nikam TD, Penna S. Differential osmotic adjustment to iso-osmotic NaCl and PEG stress in the in vitro cultures of Sesuvium portulacastrum (L.) L. J Crop Sci Biotechnol. 2010;13: 251–256. doi: 10.1007/s12892-010-0008-9

15. Bajji M, Lutts S, Kinet JM. Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf.) cultivars performing differently in arid conditions. Plant Sci. 2001;160: 669–681. doi: 10.1016/s0168-9452(00)00443-x 11448742

16. Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water—stress studies. Plant Soil. 1973;207: 205–207. Available: https://doi.org/10.1007/bf00018060

17. Grieve CM, Grattan SR. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil. 1983;70: 303–307. doi: 10.1007/BF02374789

18. Gondor OK, Szalai G, Kovács V, Janda T, Pál M. Relationship between polyamines and other cold-induced response mechanisms in different cereal species. J Agron Crop Sci. 2016;202: 217–230. doi: 10.1111/jac.12144

19. Smith MA, Davies PJ. Separation and quantitation of polyamines in plant tissue by high performance liquid chromatography of their dansyl derivatives. 1985;78: 89–91. https://doi.org/10.1104/pp.78.1.89

20. Chen H, Jiang J-G. Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environ Rev. 2010;18: 309–319. doi: 10.1139/a10-014

21. Yang ZB, Eticha D, Rao IM, Horst WJ. Alteration of cell-wall porosity is involved in osmotic stress-induced enhancement of aluminium resistance in common bean (Phaseolus vulgaris L.). J Exp Bot. 2010;61: 3245–3258. doi: 10.1093/jxb/erq146 20511277

22. Chen THH, Murata N. Glycinebetaine protects plants against abiotic stress: Mechanisms and biotechnological applications. Plant, Cell Environ. 2011;34: 1–20. doi: 10.1111/j.1365-3040.2010.02232.x 20946588

23. Meloni DA, Oliva MA, Ruiz HA, Martinez CA. Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. J Plant Nutr. 2001;24: 599–612. doi: 10.1081/PLN-100104983

24. Wu GQ, Feng RJ, Shui QZ. Effect of osmotic stress on growth and osmolytes accumulation in sugar beet (Beta vulgaris L.) plants. Plant, Soil Environ. 2016;62: 189–194. doi: 10.17221/101/2016-PSE

25. Sami F, Yusuf M, Faizan M, Faraz A, Hayat S. Role of sugars under abiotic stress. Plant Physiol Biochem. Elsevier Ltd; 2016;109: 54–61. doi: 10.1016/j.plaphy.2016.09.005 27639065

26. Yasseen B, Al-Thani R, Alhady F, Abbas R. Soluble sugars in plants under stress at the arabian gulf Region: possible roles of microorganisms. J Plant Biochem Physiol. 2018;6: 1–17. doi: 10.4172/2329-9029.1000224

27. Gill PK, Sharma AD, Singh P, Bhullar SS. Effect of various abiotic stresses on the growth, soluble sugars and water relations of sorghum seedlings grown in light and darkness. Bulg J Plant Physiol. 2001;27: 72–84. doi: 10.1111/j.1438-8677.1964.tb00169.x

28. Darko E, Gierczik K, Hudák O, Forgó P, Pál M, Türkösi E, et al. Differing metabolic responses to salt stress in wheat-barley addition lines containing different 7H chromosomal fragments. PLoS One. 2017;12: 1–20. doi: 10.1371/journal.pone.0174170 28328973

29. Zhang GY, Liu RR, Zhang CQ, Tang KX, Sun MF, Yan GH, et al. Manipulation of the rice L-galactose pathway: Evaluation of the effects of transgene overexpression on ascorbate accumulation and abiotic stress tolerance. PLoS One. 2015;10: 1–14. doi: 10.1371/journal.pone.0125870 25938231

30. Valerio C, Costa A, Marri L, Issakidis-Bourguet E, Pupillo P, Trost P, et al. Thioredoxin-regulated β-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress. J Exp Bot. 2011;62: 545–555. doi: 10.1093/jxb/erq288 20876336

31. Thalmann M, Pazmino D, Seung D, Horrer D, Nigro A, Meier T, et al. Regulation of leaf starch degradation by abscisic acid is important for osmotic stress tolerance in plants. Plant Cell. 2016;28: 1860–1878. doi: 10.1105/tpc.16.00143 27436713

32. Pál M, Szalai G, Janda T. Speculation: Polyamines are important in abiotic stress signaling. Plant Sci. Elsevier Ireland Ltd; 2015;237: 16–23. doi: 10.1016/j.plantsci.2015.05.003 26089148

33. Pál M, Tajti J, Szalai G, Peeva V, Végh B, Janda T. Interaction of polyamines, abscisic acid and proline under osmotic stress in the leaves of wheat plants. Sci Rep. 2018;8: 1–12. doi: 10.1038/s41598-017-17765-5

34. Chen D, Shao Q, Yin L, Younis A, Zheng B. Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci. 2019;9: 1–13. doi: 10.3389/fpls.2018.01945 30687350


Článok vyšiel v časopise

PLOS One


2019 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#